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Final Report on ONR Grant N00014-91-J-1184

This is a final technical report on ONR Grant N00014-91-J-1184, which provided
funding for the project “Structural Properties of Ferroelectric Perovskites” from 11 /1/90

to 12/31/96. The work was carried out at Rutgers University under the direction of the
PI, Prof. David Vanderbilt.

Scientific Background

The goal of this work was to carry out realistic first-principles computer calculations
of the ground-state and finite-temperature structural and dielectric properties of cubic per-
ovskite materials such as BaTiO3, SrTiO3, KNbO3, and PbTiO;3. These materials display
an intriguing variety of ferroelectric (FE), and antiferroelectric (AFE), and antiferrodis-
tortive (AFD) structural phase transitions, and are of particular interest for technological
applications because of the existence or proximity of ferroelectric phases at lower tempera-
tures. These give rise to unique dielectric and piezoelectric properties that are responsible
for the widespread use of these materials in Navy acoustic transucer (sonar) systems. Dur-
ing the contract period, we succeeded in developing a detailed microscopic understanding
of the structural and electrical properties of several of the most widely studied of these
materials, as detailed below.

The structural phase transitions in the cubic perovskites are highly chemically spe-
cific. That is, materials with an identical high-temperature (cubic perovskite) crystal
structure can have quite different low-temperature distorted phases, even for isoelectronic
compounds like BaTiO3 and SrTiOj(which go cubic — tetragonal FE — orthorhombic
FE — rhombohedral FE, and cubic — tetragonal AFD, respectively). Thus, an atom-
istic first-principles theoretical approach is required that is sufficiently accurate to predict
such variations in behavior and to obtain reliable information about dielectric, elastic,
piezoelectric, and electro-optic properties.

When we began this project, early work by Cohen and Krakauer'and others had
already demonstrated that first-principles calculations based on Kohn-Sham density-func-
tional theory in the local-density approximation (LDA),? could be used to formulate an
accurate, predictivé theory of these materials. Typically, these calculations have been
carried out either within the linear-augmented-plane-wave (LAPW) or the plane-wave
pseudopotential scheme. We chose to use a variant of the plane-wave pseudopotential

approach involving so-called ultra-soft pseudopotentials®~3 that are expecially well suited
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to efficient calculations of properties This method provided us with a powerful and flexible

tool for exploring the structural and dielectric properties of the perovskite materials.
Initial work on structural properties

Our initial work® focused on BaTiOs;. First, we checked that the calculated lattice
constant a=3.954 agrees well with experiment (a=4.00A) and previous theoretical work!
(a:3.94A). The ferroelectric properties of BaTiO3 were then examined by computing the
total energy of the crystal as the ions were sub ject to displacements with tetrahedral and
rhombohedral symmetry. We found the the energy of the crystal could be lowered by both
types of distortion, confirming that our theoretical method captures the essential physics of
the ferroelectric instability. We compared our theoretical atomic displacements of the low
symmetry phases with the experimentally determined structures and we found excellent
overall agreement.5:?

We next completed a battery of calculations on a set of eight perovskites comprising
SrTiO3, CaTiOs, KNbQOj3, NaNbOj, PbTiO3, PbZrO; and BaZrOj; as well as BaTiO;.8For
each material, we analyzed the adiabatic energy surface of the five-atom primitive unit cell,
when subjected to various distortions (frozen phonons and strains) consistent with peri-
odic boundary conditions. For each compound, the dynamical matrix for the zone-center
optical modes was determined from a series of frozen-phonon calculations. The eigenvector
associated with the smallest eigenvalue of this dynamical matrix was used to identify the
FE soft mode in each case. We found that the cubic structure was unstable toward the
FE soft mode for all of the compounds except BaZrO;. Next, we calculated the leading-
order (quartic) anharmonic terms in the expansion of the energy in terms of the soft mode
coordinates u. The sign of the anisotropy in these quartic terms determines whether the
tetragonal or rhombohedral distortion is preferred at zero temperature in the absence of
strain coupling. The coupling to strain was taken into account by carrying out systematic
first-principles calculations of all of the elastic constants and Gruneisen parameters needed
to determine strain-renormalized anharmonic coefficients. The renormalizations are siz-
able, and in the cases of CaTiOzand PbTiOs, we find that the preferred distortion actually

changes from orthorhombic to tetragonal when the strain coupling is included.
Theory of electric polarization in crystalline insulators

We made a fundamental advance in the theoretical understanding of electric polariza-

tion effects in solids.® In particular, we found a new expression for the change in electric
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polarization of a solid which occurs when the solid is subjected to a finite perturbation,
e.g., a displacement of the atoms. The new expression depends only on the valence band
wavefunctions of the initial and final configurations of the crystal, and thus leads to a
new and efficient method for calculating polarization effects. As a first application, the
formulation was successfully applied to compute the Born effective charges and the piezo-
electric tensor of GaAs;? the results were found to agree with previous work based on
the considerably more complicated linear-response approach. We also explained how this
approach can be used to formulate a new definition of the electric polarization in solids,
and how this polarization is related to the electrostatic charge which accumulates at an
insulating surface.!® Our new formulation has been elaborated!! and is now in routine
use by many groups, including our own, for calculation of spontaneous polarizations and

effective charges.

Anomalous Born effective charges and their effects

Using the above approach, we carried out a systematic series of first-principles cal-
culations of Born effective charges Z* and their effect on the optical phonon modes in
BaTiO3, SrTiO;, CaTiO3, KNbO3, NaNbOj, PbTiO3, PbZrO; and BaZr0;.12 We found
that anomalously large Z*’s are a general feature of perovskite compounds. Qur calcu-
lated optical phonon frequencies at the I' point for both TO and LO modes are in good
agreement with experiment. The eigenvector analysis reveals that in general, there is no
simple correspondence between individual TO and LO modes. However, the softest TO
mode usually involves the largest mode effective charge and can couple strongly with the
electric field, thus giving an unexpected giant LO-TO splitting. The strong coupling to
the electric field can easily destroy the ferroelectric state. We found that the calculated
critical depolarization factor is only &~ 0.1. This helps explain the remarkable sensitivity

of ferroelectric state to domain structure and boundary conditions.

Phase transitions in BaTiO;

We carried out a first-principles based study of the ferroelectric phase transitions
in BaTiO;."%In particular, we (i) constructed an effective Hamiltonian to describe the
important degrees of freedom of the system, (ii) determined all the parameters of this
effective Hamiltonian from high-accuracy ab-initio LDA calculations, and (iii) carried out
classical Monte Carlo simulations to determine the phase transformation behavior of the

resulting system. We found the correct succession of phases, with transition temperatures
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and spontaneous polarization in reasonable agreement with experiment. All transitions
were found (correctly) to be of first order, and estimates of the latent heat were obtained.
Strain coupling was found to be crucial in producing the correct succession of low-symmetry
phases. By analyzing the local distortions and phonon softening, we found the cubic-
tetragonal transition in BaTiO3; to be intermediate between the displacive and order-

disorder limits.

Phase transitions in SrTiO;

We applied a similar approach to study the competition between ferroelectric (FE)
and antiferrodistortive (AFD) instabilities in compounds such as SrTiO3.1¢ In this case,
we added to the effective Hamiltonian an additional set of degrees of freedom to represent
the zone-boundary (octahedron rotation) modes associated with the AFD phases, fixing
the coefficients in the Hamiltonian from LDA supercell calculations. We then carried
out classical Monte Carlo simulations to determine the phase transformation behavior of
the resulting system. We found that in this and many related cubic perovskites, the FE
and AFD instabilities have a tendency to suppress one another, and have an opposite
dependence on pressure. The Monte Carlo simulations thus show complicated behavior as
a function of pressure and temperature for SrTiO3. We found the transition from cubic to
the tetragonal-AFD phase to occur at a temperature close to the experimental one, but
we also found a transition to FE phases at very low temperature, where experimentally

only a mysterious “quantum paraelectric” behavior is observed.

Effect of quantum fluctuations on phase transitions

Motivated largely by questions about the low-temperature phase behavior of SrTiOj3,
we extended the study of the phase transitions in SrTiO3; and BaTiO; by considering
quantum (zero-point) fluctuations of the atom positions.!” Normally such quantum effects
are thought to be unimportant except for very light-atom systems (e.g., H, He) but we
have shown that the smallness of the amplitude of the distortion associated with the FE or
AFD phase is responsible for a sizeable quantum effect. In order to include the quantum
effects in our Monte Carlo simulations, we made use of the path-integral Monte Carlo
approach. We found that the quantum effects lower the transition temperatures of the FE
modes in BaTiO; and of the AFD modes in SrTiO; by 15-30 K, and eliminate entirely the
low-temperature FE phases in SrTiO3. This slightly worsens the quantitative agreement

of the transition temperatures in BaTiO; but gives excellent agreement with experiment
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for SrTiO3. Our results are consistent with a picture in which the magnitude of the FE
fluctuations increases continuously with diminishing temperature, and becomes very large
at T = 0, but we see no signs of a true phase transition at 37K as suggested by some

authors.

Tight-binding study of Born effective charges

We have made a systematic study of the dynamic effective charges in compound
semiconductors using our polarization approach? in the context of tight-binding theory.!8
We calculate the transverse effective charges of zincblende compound semiconductors using
Harrison’s tight-binding model to describe the electronic structure. Our results, which
are essentially exact within the model, are found to be in much better agreement with

experiment than previous perturbation-theory estimates.

Search for low-temperature instability in PbTiO;

A first-principles study of the vibrational modes of PbTiO; in the ferroelectric tetrag-
onal phase was performed at all the main symmetry points of the Brillouin zone.!® The
calculations reproduce well the available experimental information on the modes at the I'
point, including the LO-TO splittings. The work was motivated in part by a previously
reported transition to an orthorhombic phase at low temperatures.?’ We showed that a
linear coupling of orthorhombic strain to one of the modes at T’ plays a role in the discus-
sion of the possibility of this phase transition. However, no mechanical instabilities (soft

modes) are found, either at T or at any of the other high-symmetry points of the BZ.

Study of 180° domain walls in BaTiO;

We carried out a study of the structure and energy of 180° FE domain walls in
the tetragonal (room-temperature) phase of BaTiO3,%! using the effective Hamiltonian
developed previously by us.!®> We found the domain wall to be atomically sharp, with the
FE order parameter reversing (as opposed to rotating) as the domain wall is crossed. We
calculated the average domain wall width, energy, and free energy. Previous theoretical
and experimental estimates of these quantities were widely varying, and we believe our

results give the most reliable values obtained to date.



Structural phase transitions in CaTiO; and NaNbO;

We have applied our approach (first-principles calculations followed by classical Monte
Carlo simulations on a fitted effective Hamiltonian) to study phase transitions in CaTiO;
and NaNbOj. Like SrTiOs, these are compounds in which there is a competition between
FE and AFD instabilities. However, these compounds are found to have rather complicated
low-temperature structures, and the agreement between theory and experiment is less

satisfying than for SrTi0;.22

BaTiO; (100) surfaces

We carried out calculations of the structural properties of BaTiO; surfaces.2*We con-
sidered the case of the (100) BaO- and TiO»-terminated surfaces of tetragonal BaTiO;
(with the ferroelectric order parameter lying parallel to the surface). We obtained the
relaxed surface structure, including a determination of the influence of the surface on the
ferroelectricity. We found only a weak enhancement of the ferroelectricity near the surface.
The surface electronic structure was also studied; no deep gap states were found, but a
valence-band derived state was found to protrude into the lower part of the band gap on

the TiO,-terminated surface.

Polarization effects in AIN/GaN interfaces

In collaboration with the group of V. Fiorentini (Cagliari, Italy) we carried out a study
of the effects of polarization effects for polar AIN/GaN semiconductor interfaces. In this
system, the lattice mismatch between AIN and GaN gives rise, through the piezoelectric
effect, to polarizations that must be separated out in order to define and compute the band
offsets. In a related study, we also computed the polarization directly for strained III-V
nitrides via the Berry-phase method, and thereby carried out a systematic study of the

dynamical effective charges and piezoelectric constants of these wide-gap semiconductors.
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First-principles investigation of ferroelectricity in perovskite compounds
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We have used a first-principles ultra-soft-pseudopotential method in conjunction with an efficient
preconditioned conjugate-gradient scheme to investigate the properties of a series of eight cubic per-
ovskite compounds. The materials considered in this study are BaTiOs, SrTiO3, CaTiO3, KNbOs,
NaNbOs, PbTiO3s, PbZrO3, and BaZrO;. We computed the total-energy surface for zone-center
distortions correct to fourth order in the soft-mode displacement, including renormalizations due
to strain coupling. Quantities calculated for each material include lattice constants, elastic con-
stants, zone-center phonon frequencies, Griineisen parameters, and band structures. Our calcula-
tions correctly predict the symmetry of the ground-state structures of all compounds whose observed
low-temperature structure retains a primitive five-atom unit cell. The database of results we have
generated shows a number of trends which can be understood using simple chemical ideas based on
the sizes of ions, and the frustration inherent in the cubic perovskite structure.

I. INTRODUCTION

The perovskites are an extremely important class of
ferroelectric materials.! Generically these compounds
have a chemical formula ABO3; where A is a monova-
lent or divalent cation and B is a penta- or tetravalent
metal. The perfect perovskite structure is very simple
and has full cubic symmetry. It can be thought of as a
lattice of corner sharing oxygen octahedra with interpen-
etrating simple cubic lattices of A and B cations. The
B cations sit at the center of each oxygen octahedra
while the A metal ions lie in 12-fold coordinated sites
between the octahedra. The fascinating feature of the
perovskite structure is the extreme ease with which it
will undergo structural phase transitions; experimentally
the perovskites exhibit a diverse range of phases includ-
ing transitions to both ferroelectric and antiferroelectric
states as well as structural transitions to states involving
tilting of the oxygen octahedra.

In spite of the fact that the perovskites have been
the subject of intense investigation since the discovery
of ferroelectricity in barium titanate in the 1940s, there
is still no complete understanding of the nature of the
transitions in these materials. For example, given the
chemical formula of a perovskite material, there are no
reliable methods for predicting transition temperatures,
whether a transition is first or second order, or even
which phonons in the material will be responsible for
transitions. In principle these quantities can be ob-
- tained by calculating the partition function given the
ion-ion Hamiltonian of the crystal.! It is well established
that both harmonic and anharmonic phonon-phonon cou-
plings as well as phonon-strain couplings are essential
ingredients for a description of the transitions observed
in the perovskites. However, there is little quantita-
tive knowledge about the interaction parameters of this
Hamiltonian and an accurate determination of these vari-
ables is a challenging theoretical problem.

First-principles density functional calculations offer an
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attractive approach for enhancing our microscopic under-
standing of perovskites and other ferroelectrics. One of
the earliest successes of this method was due to Rabe and
Joannopoulos who combined conventional pseudopoten-
tial methods with renormalization-group theory to calcu-
late the transition temperature of the narrow-band semi-
conductor GeTe.?

More recently there has been a flurry of activity to ap-
ply these methods to perovskite compounds. Cohen and
Krakauer® used the all-electron full-potential linearized
augmented-plane-wave (FLAPW) method to study fer-
roelectricity in BaTiO3 within the local density approxi-
mation (LDA). They performed a series of frozen phonon
calculations and demonstrated that the phase with full
cubic symmetry is unstable with respect to zone-center
distortions, in accord with the experimentally observed
ferroelectric transition in this material. They went on
to study the depth and shapes of the energy well with
respect to soft-mode displacement, and to demonstrate
that strain strongly influences the form of the total-
energy surface. Later they extended this approach to
the case of PbTi03.% Using experimental data as a guide
they were able to show that the observed tetragonal fer-
roelectric ground state of this material is stabilized by
the large strain which appears upon transition from the
cubic structure. Cohen emphasized that the hybridiza-
tion between the titanium 3d and oxygen 2p is necessary
for ferroelectricity in BaTiO3 and PbTiO3.% Singh and
Boyer have also used the FLAPW method to investigate
ferroelectricity in KNbO3.6 They found that the cubic
structure was stable at the theoretical lattice constant, at
variance with experimental observations, although their
calculations did show weak ferroelectric behavior when
they set the lattice constant to the experimental value.
The FLAPW studies have demonstrated that ferroelec-
tricity in the perovskites reflects a delicate balance be-
tween long-range electrostatic forces which favor the fer-
roelectric state and short-range repulsions which favor
the cubic phase. Thus it has been demonstrated that

5828 ©1994 The American Physical Society
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high-quality LDA calculations can shed considerable in-
sight into the nature of the total-energy surface in the
perovskites. However, the work also raises a note of cau-
tion about the validity of the LDA. For example the work
of Singh and Boyer® suggests that KNbOj is not a ferro-
electric in this approximation.

Recently we have applied the ultrasoft-pseudopotential
method to investigate ferroelectricity in BaTiO3.” Pseu-
dopotential methods offer a number of advantages over
all-electron methods. They are computationally more ef-
ficient than methods such as the FLAPW, and more-
over allow one to compute forces on the ions analyti-
cally. Methods which provide information on Hellmann-
Feynman forces allow the adiabatic energy surface to be
explored with many fewer calculations than techniques
which only compute total energies. However, the use
of a pseudopotential does introduce further approxima-
tions beyond the LDA, associated with neglect of the
core states and other transferability issues. The results
of our calculation on BaTiOs,” which included Ba and
Ti semicore states, were in substantial agreement with
the work of Cohen and Krakauer. We thus demonstrated
that this approach can attain the level of accuracy nec-
essary to capture the physics of the of ferroelectricity in
the perovskites.

In the present paper we have chosen to apply the
ultrasoft-pseudopotential approach to a series of eight
perovskites, thus greatly increasing the amount of first-
principles data available on these materials. Again, we
include semicore states in the valence shell for all met-
als considered. The compounds selected for study were
BaTiOs, SrTiO3, CaTiO3, KNbO3, NaNbO3, PbTiO3,
PbZrO3, and BaZrOj3. The properties of these materi-
als are reviewed in Refs. 1 and 8. Experimentally all
of these compounds are observed to have the perfect
cubic perovskite structure at sufficiently high tempera-
tures. Three of these materials, BaTiOs, KNbOj, and
PbTiO3, are observed to have ferroelectric ground states
with five atoms in the primitive cell. Both BaTiO3 and
KNbOj3 are observed to undergo the same sequence of
transitions as a function of temperature from the per-
fect cubic perovskite structure, to a tetragonal phase, to

an orthorhombic phase before becoming rhombohedral °

at the lowest temperatures. By way of contrast PbTiO;
has a single well-established transition from the cubic to
the tetragonal phase at 493°C. SrTiOj; is an incipient
ferroelectric which undergoes a nonferroelectric oxygen
tilting transition at about 105 K. CaTiO3 undergoes a
single transition from the cubic state to an orthorhombic
phase with 20 atoms in the unit cell at about 1260 °C.
NaNbOgj shows at least six transitions as a function of
temperature. Its ground state is a monoclinic ferroelec-
tric phase with four formula units per unit cell. PbZrO4
is an antiferroelectric compound with eight formula units
per unit cell. The transition from the cubic phase occurs
at about 230 °C. Finally BaZrQj; is the simplest material
considered here and is believed to have the perfect cubic
perovskite structure at all temperatures.

Our approach has been to focus exclusively on the pos-
sible zone-center instabilities of these materials. This re-
striction has a number of important practical advantages.

First, as will be demonstrated in the following sections,
the number of degrees of freedom of the system in this
case is small enough to allow us to perform a completely
systematic expansion of the energy to fourth order in the
soft-mode displacement vector, without the need for ex-
perimental input which might bias our results. Second,

. this simplification allows us to focus on trends in the

total-energy surface with composition even when the ex-
perimental situation may be much more complicated. For
example it is clear from the previous discussion that the
experimental behavior of each compound in the BaTiOs,
SrTiO3, CaTiOj series is quite different. By concentrat-
ing on the relatively small number of parameters associ-
ated with zone-center distortions we might hope to begin
to unravel the origins of these differences in these chemi-
cally similar materials. Finally, by choosing to work with
the smallest possible cells we can afford to use very high-

-quality k-point sets for the Brillouin zone integrations.

In the following it will be demonstrated that it is impor-
tant to ensure that calculations are exceptionally well
converged in this respect when studying ferroelectricity
in the perovskites.

The remainder of this paper is set out as follows. In
Sec. IT we develop our systematic expansion of the soft-
mode total-energy surface about the cubic perovskite
structure. Section III describes some of the technical
aspects of our work and discusses the convergence of our
calculations. We present the results of our calculations
in Sec. IV, and comment on some of the implications
of the results in Sec. V. We review the main conclu-
sions of this study in Sec. VI. Appendix A contains
some of the more formal parts of the derivation of the
energy expansion about the cubic perovskite structure.
Appendix B describes our conjugate-gradient technique
for minimizing the Kohn-Sham energy functional. Unless
otherwise stated all results in the following sections are
quoted in atomic units (i.e., lengths in bohrs and energies
in hartrees).

II. FORMALISM

In order to carry out our investigation of the total-
energy surfaces of the eight compounds in question it
will be useful to develop a systematic expansion for the
energy about the cubic perovskite structure. Qur goal is
to compute the minimum energy of configuration of the
ions in the structure. It is well known that strain degrees
of freedom play a significant role in determining the ener-
gies of the low-symmetry ferroelectric phases and should
therefore be included in. the analysis.!'** As stated in
the Introduction we shall exclude from consideration any
distortions which change the number of atoms in the unit
cell. At first sight our task of performing a systematic
exploration of the energy surface poses a formidable chal-
lenge, because even if we only include zone-center distor-
tions and strains we are still faced with examining the
properties of an 18-dimensional energy space.? However,
we shall show that a manageable scheme for carrying
through this program can be developed provided we re-
strict ourselves to computing the energy correct to fourth
order in the soft-mode displacement. The high symme-
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try of the cubic perovskite structure greatly reduces the
number of calculations which are required. Our expan-
sion of the energy is similar in spirit to that of Pytte,?
although it differs in some details.

Formally the energy of the crystal is function of the six
independent components of the strain tensor 7;, where I
is a Voigt index (7 = e11,7m4 = 2e23), and the 15 dis-
placement variables v7,, where 7 is an atom label and o
is a Cartesian direction. Thus we may write the energy
per unit cell as

E = E({m},{va})- ey

In the following we shall make extensive use of the fact
that

E({n:}, {vz}) = E({mi}, {-v})- (2)

Equation (2) follows by virtue of the fact that each atom
in the perovskite structure sits at a center of inversion
upon application of an arbitrary homogeneous strain.
Formally it will be helpful to divide the energy function
into parts arising from pure displacement, pure strain,
and an interaction term as

E = E*+E*P({v,)+E ({m})+E™ ({m:}, {va}),
3)

where E° is the energy of the perfect perovskite struc-
ture. E4*P({y7}) and E°®*({7;}) give a description of
the energy to all orders at zero strain and zero displace-
ment respectively. In crystals with cubic symmetry the
strain energy is given, correct to second order in the
strains, by

elas 1
E*®*({n:}) = 3 Bui(n} + 3 +13)
+Bia(mmnz + m2m3 + n3m)
1
+§B44(TIZ + 73 +13), (4)

where Bi1, Bi2, and By, are related by factors of the cell
volume to the elastic constants of the crystal.

We begin by considering in detail the expansion of
Edi*p({y7}). Straightforward Taylor expansion of the
energy implies that the lowest-order term can be writ-
8’E

1 TYT’ T 1" T!TI
€ 5 = —
ten as 35 ., 5D gvovs where D g Bvzong |,

The second derivative matrix D;:Z is of course related
to the zone-center dynamical matrix by trivial factors of
the ionic masses. The symmetry properties of D;’TI have
already been discussed in the context of ﬁrst-principles
calculations.®® In the following we shall adopt a coordi-
nate system such that the atoms in our general perovskite
with formula ABQOj; in the perfect structure have posi-
tions A at (0,0,0)a, B at (},1,3)a, Oy at (0,3,3)a, O at
(%,0,%)(1, and Oy at (%,%,O)a, where a is the lattice con-
stant. The first point to note is that all elements of D;’Z
for which a # (3 are zero (it is intuitive that displacement
of any of the five sublattices in, say, the z direction will
produce no forces in the y or z direction). The 15 x 15
second derivative matrix therefore breaks into a set of
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three independent and identical 5 x 5 blocks, each cor-
responding to displacements in the z, y, or z direction.
As a consequence the eigenvalues of the second derivate
matrix fall into five sets of threefold degenerate modes.
In the following we will denote the eigenvalues of D:';
as A(7) where j is an index which runs from 1 to 5. Thus
we may write

3 D756 (5,7) = MAELG - (5)
Br!

Moreover, it is clear from the foregoing discussion that
the eigenvectors, £%(j, 3), of the second derivative matrix
can be chosen to lie entirely along z, y, or z and can thus
be labeled by j and the Cartesian direction 3. With this
convention we will have £7,(7, 3) = 0 if a # 3. Two of the
eigenvectors of each 5 x 5 block are determined by sym-
metry. The first mode is the trivial translation mode with
eigenvalue 0. The second mode has I'z5 symmetry.® The
eigenvector of this mode for displacements in the z di-
rection has the form (0,0,——1;, —%,0) where the displace-

ment vector is listed in the order (vA,vZ,p01,v0m vOmm)

The remaining three modes of each block have I';5 sym-
metry and their eigenvectors cannot be deduced on sym-
metry grounds alone. Experimentally it is these modes
with I';5 symmetry which are responsible for ferroelec-
tric transitions from the high-symmetry cubic phase. In
a material such as barium titanate where the experimen-
tal ground state is a five-atom unit cell with rhombohe-
dral symmetry one expects at least one of the three I'15
eigenvalues to have a negative sign, indicating that the
cubic structure is a saddle point of the total-energy sur-
face. In the following the lowest-frequency mode with
I';5 symmetry will be referred to as the soft mode.

We can reexpress E4*P, correct to second order, in

terms of the diagonalized D;’,‘g matrix as
. 1 ) o
B = 15 0) Y v, (o)
k] [
where u/, are eigenmode amplitudes given by

ul, =Y €3G v (6b)

Because of their special role in the following it will be
convenient to introduce a simplified notation to describe
the soft-mode distortions. If jeog is the index of the soft
mode, then we define
1., :

K= EA(Jsoft)y (7a)
and will suppress the j superscript for the soft-mode am-
plitude so that

Ug = udrert, (7b)

Having decoupled the soft-mode degrees of freedom to
second order in the displacements we now consider the ef-
fects of higher-order terms in the soft-mode expansion of
the energy. We introduce ®({uo}) which is E4*P with all
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non-soft-mode eigenmode amplitudes held at zero. There
can be no third-order terms in the displacement which
contribute to ®({uq}) by virtue of Eq. (2). Two indepen-
dent parameters are required to describe the fourth-order
terms and we find

1
P o) = 2 ~ B 4
({ua}) = su® + DY R ;ua

1
42 By (203 + 202 ), (80)
where
8*E
B:l::::cm = 3 al
i |, (8b)
‘E
Bza: = T oA o
Y Gu2dul 0 (8)
and v? = Y _u2. It will simplify the notation if we

introduce two new parameters « and 7 defined by

1

a= EZBMM (9a)
and
1
Y= E(3Bzzyy - Bzzzz)- (Qb)

Substituting into Eq. (8a) we obtain

®({ua}) = wu® + ou® + y(uiud + ulul + ulul).
(10)
The constant v gives a measure of the anisotropy of the
total-energy surface. In the following we shall be primar-

ily concerned with the case where there are zone-center
instabilities so that k < 0. Under these circumstances it

can be shown that ® has four distinct types of station- .

ary points. The first of these is the trivial case where
Uy = Uy = U, = 0, with & = 0. This is always a max-
imum of & when x < 0 indicating that the crystal is
unstable in the cubic perovskite structure. There are
six symmetry-equivalent stationary points of the second
type. They lie along the (100) directions and have posi-
tions such as

Upg =1Uy =0, u, = ~5a (11a)
with energy
2
K
b=——. 11b
o (11b)

The third set of stationary points, of which there are 12,
falls in the (110) directions and has coordinates of the

type

/ K
Uz =0, uy =u, = _4a+'y’

with energy

(12a)

K2

bP=—
4(a+%'y)

(12b)

Finally there are eight equivalent stationary points in the
(111) directions with positions such as

f K
Uy = 'u,y =U, = -——6a + 27, (13&)
with energy
2
K
P=-—. 13b
Tar ) (30

Necessary conditions for the above fourth-order analysis
to be valid are that a > 0 and v > —3a. Otherwise the
energy has unphysical divergences to —oo implying that
higher-order terms must be taken into account. Provided
the fourth-order analysis is valid, two distinct ground
states can arise depending on the sign of 4. If v > 0, then
Eq. (11b) is a global minimum and the crystal ground
state has tetragonal symmetry. If v < 0, then the global
minima are along the (111) directions and the ground
state has rhombohedral symmetry with energy given in
Eq. (13b).

Finally we must consider how the above picture is
modified when we permit possible extra relaxations of
the system through coupling of the soft modes to other
phonons and the strains. The basic strategy is to com-
pute the values of 7; and uJ, which minimize the total en-
ergy as a function of the soft-mode variables. Following
the notation of Ref. 10 we denote these minimizing values
with 7;({ua}) and @’ ({uq}) and the corresponding en-
ergy with E ({¢a})- By straightforward differentiation of
Eq. (3) it can be shown that the only term which leads to
renormalization of the soft-mode surface, in the fourth-
order theory, is the lowest-order term in E'**.*! This term
can be written in the form % Ziaﬁ B;apnitqtg, in an ob-
vious notation. To second order in u,, 7; is given by the
solution to the matrix equation

~ 1
Z Biini + 2 Zﬁ Biopuqug = 0. (14)
j a

There are three different types of nonzero elements in the
6 x 3x 3 matrix B;o3. Typical nonzero elements are Bz,
Biyy, and Byy,. The renormalized energy is given by

E({ua}) = E° + 2({ra})
1
_§ Z Z uQUgBiagN;ij.,,;u,,u,;,
ij afvd
(15)

where N;; = [B‘l]‘.j. The solution of Eq. (14) to obtain

E({us}) in Eq. (15) is somewhat tedious, and is therefore
deferred to Appendix A. It is shown there that
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jad 2 l/2
B({u}) = B + 8({ua}) - (% v 4u_t) u

where B is the bulk modulus,

B = By; + 2B;,, (176.)

p¢ and p, are shear moduli for tetragonal and rhombo-
hedral distortions,

1
e = 5(311 — Bi3), (17b)

My = By, (17¢)

and C, v, and v, are analogously defined quantities ob-
tained from the strain-phonon coupling constants,

C = Bise + 2By, (17d)
1

Vg = E(Blzz Blyy); (178)

Vp = B4yz- (17f)

Comparing Eq. (16) with Eq. (8a) we arrive at the reas-
suring conclusion that the fourth-order corrections to the
minimum energy E({uq}) arising from soft-mode cou-
pling to the strain have exactly the same structure as
the original “bare” fourth-order terms. The net effect
of switching on the coupling between the phonon and
strain degrees of freedom can be thought of as a renormal-
ization of the bare fourth-order interaction coefficients

Bezeo and Bagyy to B,,,, and B, defined by
C? V2
B;zzz = Brzer — (_ + 4_t) 18a
BT (18a)

and

1/C* 2 V2
o = By = (G~ 25462 ). s

B Mt Hr

We therefore conclude that our analysis of the stationary
properties of the total-energy surface can equally well be
applied to the case where phonon-strain couplings are
present, provided we work with renormalized coupling
constants o and ' where

C? V2
'=a—- == +42% 19
a=a 24(B+ Nt) (19a)
and
1 (v V2
7I=7+5(;7i_;7)' (19b)

Our final expression for E({u, }) is simply
E({ug}) = E°+ru? +d'u4+'y'(u:u3 +udul+ulul).

(20)

1 (02 vE V2

Z_ 9% L elr 2,2 2,2 2,2
B p + ﬂr) (u,_.uy +uyu; +ugug), (16)

|

In the case where x < 0 there are two possible ground
states in the complete fourth-order theory. If 4/ < 0,
we would predict that a phase with rhombohedral sym-
metry has the lowest energy, where as 4/ > 0 implies
that the ground state is tetragonal. In the following sec-
tion our objectives are to use high-quality first-principles
calculations to obtain the various expansion parameters

necessary to determine the constants in Eq. (20).

In conclusion we have shown that the minimum total
energy as a function of soft-mode displacement can be
determined correct to fourth order in u,, in terms of nine
independent interaction parameters x, By, Bia, By,
Bizz, Biyy, Bayz, Brzze, and B.zyy. We have found
that in practice these quantities can be computed using
about 40 self-consistent calculations per material. The
major formal results are that coupling of the soft mode
to the strain renormalizes the minimum energy surface
in our fourth-order approximation, whereas coupling to
other phonons does not. The quadratic coefficient in the
total energy, &, is unrenormalized by either phonon or
strain interactions.

III. TECHNICAL DETAILS
OF CALCULATIONS

The first-principles calculations presented in this pa-
per were performed using the Vanderbilt ultrasoft-
pseudopotential scheme.!? Technical details of this
method and its implementation in solid-state calculations
have already been discussed elsewhere.”"13716 A feature of
the present work is the use of a conjugate-gradient tech-
nique for minimizing the Kohn-Sham energy functional,
as described in Appendix B.

The ultrasoft-pseudopotential approach has two ma-
jor advantages. First, it allows us to work with a modest
plane-wave cutoff, despite the presense of both first-row
atoms and first-row transition metal atoms, which are
generally difficult cases for pseudopotential methods.!”
This is accomplished at the expense of introducing a gen-
eralized eigenvalue equation containing an overlap oper-
ator, and generalizing the usual definition of the valence
charge density to include an augmentation step. The ul-
trasoft potentials are a little more complicated than the
original Kleinman-Bylander separable potentials.!® How-
ever, the computational costs associated with the extra
steps in the calculations only add a small fraction to the
time required per conjugate-gradient iteration.

Second, it allows for the generation of exception-
ally transferable pseudopotentials, because of its use
of multiple reference energies during the construction
procedure.’? In essence the scheme allows one to insist
that the all-electron and pseudologarithmic derivatives
agree at two or three energies, instead of at just one
energy.'® This ensures that the all-electron and pseudo-
atom scattering properties agree over an exceptionally
wide energy range. Moreover, it allows us to treat ex-
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TABLE 1. Transferability of the titanium pseudopotential. All-electron 3s, 3p, 43, and 3d eigenvalues are given in hartrees;
A is the corresponding difference between the all-electron eigenvalue and pseudoeigenvalue, in mhartree. A = 0 in the reference

35%3p®4523d" configuration by construction.

Configuration 3s A(3s) 3p A(3p) 4s A(4s) 3d A(3d)
3323p®4s23d? -2.288023  -0.2 -1.425332 -0.3 -0.169049 0.0 -0.164012 0.2
3s23p%44%3d! -2.765159 0.0 -1.893377 0.0 -0.445220 0.0 -0.592621 0.0
3523p®45%3d° -3.359884 0.5 -2.475773 0.3 -0.783472 0.0 -1.139811 -1.1
3s%3p®4s'3d! -3.104766 0.1 -2.231605 0.1 -0.707960 0.0 -0.921973 0.0
3523p®45°3d° -4.175466 0.0 -3.285763 0.2 -1.359890 0.6 -1.930327 0.3
3s%3p°4523d" -3.396932  -1.8 -2.511765  -2.1 -0.790393 0.1 -1.169291 0.2

plicitly the “shallow” core states in the calculation by
including multiple sets of occupied states in each angular
momentum channel. This helps to improve the chem-
ical hardness of the potential.? Moreover, there is ev-
idence that explicit treatment of the semicore levels is
necessary to correctly describe the phonon instabilities
of perovskites and related materials.?!

Semicore shells have been included in the present cal-
culation for all the metals considered. Specifically, we
include as valence states the 2s and 2p states of Na; the
3s and 3p states of K, Ca, and Ti; the 4s and 4p states
of Sr, Zr, and Nb; and the 5s and 5p states of Ba. We
also include the 5d shell in Pb. Thus, we have been much
more conservative about our choice of what constitutes a
valence state than is generally the case in the pseudopo-
tential method.?2 This is motivated by the need for high
accuracy when studying the ferroelectric instabilities in
perovskites.

Other details are as follows. Relativity was included
by first performing scalar relativistic calculations on
all-electron atoms,?® and then applying a suitable gen-
eralization of the pseudization procedure proposed by
Kleinman.? The oxygen potential used two construction
energies each in the s and p channels. The potentials
for the metals in this study all employed two reference
energies per angular momentum in s, p, and d channels.
The pseudo-wave-functions were constructed using the
optimized potential method proposed by Rappe et al.,!”
by minimizing the kinetic energy of the pseudo-wave-

function above the plane-wave cutoff, which we chose to
be 25 Ry throughout our calculations. A variant of the
same scheme was also applied to generate pseudo-charge-
augmentation functions. In this case the cutoff for the
optimization step was chosen to be 100 Ry, because the
cutoff energy for the potentials and densities in plane-
wave methods is generally 4 times as large as that for
the wave functions.

Our tests suggest that the potentials in this study are
of very high quality. We shall consider in more detail
the case of Ti, which is probably the least transferable of
the ten pseudopotentials required for this study. There
are two main tests of pseudopotential transferability in
common use. The first involves checking that the log-
arithmic derivatives of the all-electron and pseudoatom
agree over a reasonable range of energies. In a previous
publication we showed that our titanium potential does
an exceptional job of matching the all-electron logarith-
mic derivatives over a 4 hartree range of energy.” The
second main test is to check that the all-electron atoms
and pseudoatoms have similar eigenvalues when the ion-
ization state of the atom is changed. In Table I we sum-
marize the results of our tests on the titanium potential.
The atom was generated in the 3s23p%4s23d! configu-
ration and so A, the difference between the all-electron
eigenvalues and pseudoeigenvalues in mhartree, is zero
by construction for all states in this case. The largest
values of A of —2.1 mhartree occur when an electron is
removed from the 3p level. However, given the depth of

TABLE II. Convergence of eigenvalues and eigenvectors of D;E' with k-point set in PbTiO3. The lower eigenvalues, which
are a measure of potential soft-mode instability, are remarkably sensitive to the k-point sampling; this may be indicative of
delicate cancellations between competing contributions to the force constants. Subsequent calculations use the (6,6,6) mesh.

k points Eigenvalues Eigenvectors
222 -0.00918 -0.8679 0.0246 0.3244 0.3244 0.1885
0.15538 -0.0620 0.5993 0.1207 0.1207 -0.7795
0.16851 -0.2119 0.6631 -0.4236 -0.4236 0.3955
444 -0.01824 -0.6400 -0.4376 0.4062 0.4062 0.2622
0.05070 -0.6145 0.7801 -0.0285 -0.0285 -0.1096
0.15338 -0.1168 0.0003 -0.3655 -0.3655 0.8479
666 -0.02584 -0.5729 -0.5146 0.4074 0.4074 0.2732
0.04422 -0.6765 0.7312 0.0144 0.0144 -0.0843
0.15250 -0.1183 0.0027 -0.3657 -0.3657 0.8476
888 -0.02720 -0.5644 -0.5237 0.4066 0.4066 0.2765
0.04350 -0.6830 0.7250 0.0210 0.0210 -0.0826
0.15264 -0.1187 0.0059 -0.3665 -0.3665 0.8468
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TABLE III. Convergence of eigenvalues and eigenvectors of DZ;B' with energy cutoff in PbTiOs. Results appear to be well
converged at 25 Ry, which is used as the cutoff for subsequent calculations.

Cutoff (Ry) Eigenvalues Eigenvectors
25 -0.02584 -0.5729 -0.5146 0.4074 0.4074 0.2732
0.04422 -0.6765 0.7312 0.0144 0.0144 -0.0843
0.15250 -0.1183 0.0027 -0.3657 -0.3657 0.8476
50 -0.02400 -0.5961 -0.4888 0.4087 0.4087 0.2674
0.04493 -0.6576 0.7489 -0.0055 -0.0055 -0.0804
0.15565 -0.1099 -0.0106 -0.3645 -0.3645 0.8497

this state it is extremely unlikely that it could be de-
pleted by anything approaching a single electron in the
ground state of a real solid. The more important data are
- therefore the rows connected with removal of the valence
4s and 3d electrons. Typically the values of A are less
" than 0.5 mhartree in this case. Overall the agreement
between all-electron eigenvalues and pseudoeigenvalues
appears to be comparable with that achieved by Teter’s
recent extended-norm and hardness-conserving (ENHC)
potentials, which represent the state of the art in this re-
spect in more conventional pseudopotential technology.?®

The solid-state calculations throughout this work were
performed using a (6,6,6) Monkhorst-Pack mesh,? ie.,
6 points in the full Brillouin zone. The unit cells used
here had either cubic, tetragonal, or rhombohedral sym-
metry, which yielded 10, 18, and 28 k points in the irre-
ducible wedge of the zone respectively. This represents
a k-point set of quite exceptional quality given that the
materials in question are all insulators. However, our
tests indicate that this level of accuracy is necessary
when computing the properties of the soft-mode total-
energy surface. For example Table II shows how the
I';5 symmetry eigenvalues and eigenvectors of the D;};"
matrix converge as a function of k-point set quality in
PbTiOs. The second derivative matrix was constructed
using a frozen phonon approach. The soft-mode eigenval-
ues A(jsoft) = 2, computed with the (4,4,4) and (6,6,6)
Monkhorst-Pack mesh, differ by about 30%. The anal-
ysis of the previous section shows that the well depths
depend on k2. We would therefore conclude that well
depths computed with the (4,4,4) and (6,6,6) Brillouin
zone meshes would disagree by 50% if the anharmonic
terms were unaffected. This unusual sensitivity may be
indicative of delicate cancellations between competing
contributions to the restoring forces for soft-mode dis-
tortions.

A plane-wave cutoff of 25 Ry was used throughout our
calculations, consistent with the optimization value used
in our construction procedure. We have also tested the
convergence of the I';5 eigenvalues and eigenvectors of
the ;"ﬂ" matrix with respect to energy cutoff. Results
are summarized in Table ITI. We find that « changed
by about 7% on increasing the cutoff from 25 to 50 Ry.
The higher-frequency A(j) are converged to about 2% at
25 Ry. It would therefore appear that the error due to
incomplete convergence of the basis set is of similar size to
the k-point sampling error. The exchange and correlation
was calculated using the Ceperley-Alder form.?¢

We conclude that our calculations are fairly well con-

verged with respect to k-point sets and plane-wave cutoff,
although there is room for improvement in these areas. It
should be borne in mind that many previous studies on
the perovskite compounds have used the (4,4,4) rather
than (6,6,6) Monkhorst-Pack meshes.>® We think that
this is potentially a significant source of error, particu-
larly when it comes to computing the depths of the fer-
roelectric wells.

IV. RESULTS

A. Lattice constants of the perovskites

We computed the value of the lattice constant which
minimizes the energy of the structure when the ions are
held fixed in the perfect cubic perovskite structure. Our
results, in atomic units, are summarized in Table IV. The
values obtained are in excellent accord with those calcu-
lated with the FLAPW method, in those cases where cal-
culations exist. The first-principles results are generally
1—2% smaller than the experimental values. This mag-
nitude and sign of error are typical of high-quality total-
energy calculations, which tend to underestimate lattice
constants as a consequence of the LDA. For compari-
son we have also computed values of the lattice constant
using Shannon-Prewitt radii.?” We consider the possi-
bility that the lattice constant is determined either by
interaction of the 12-fold coordinated A cation and oxy-
gen (A-O), or by interaction of the 6-fold coordinated
B cation and oxygen (B-0). The ionic radius approach
clearly tends to overestimate the lattice constant. In their
original paper Shannon and Prewitt*” noted that their
method tends to perform relatively poorly for perovskites
and other high-symmetry structures. Nevertheless, many
of the trends observable in Table IV can be understood
in terms of this simple picture. For example both the
theoretical and experimental lattice constants are seen
to decrease with decreasing radius of the A cation in the
BaTiOs, SrTiO3, CaTiO;3 series. In a similar way we
also find that the lattice constant increases on replacing
Ti with the larger Zr ion in both BaTiO3 and PbTiOs.

In the final column of Table IV we introduce a quan- '
tity, 8, which is a length that measures the extent of the
frustration between the competing (4-O) and (B-0O) in-
teractions in the cubic perovskite lattice. We define § to
be the difference between the cubic lattice constants pre-
dicted by the Shannon-Prewitt radii assuming that (A-
0) and (B-O) interactions are dominant. Thus a value
of & close to zero, as found in BaZrOj; or SrTiOs, im-
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TABLE IV. Cubic perovskite lattice constants in bohrs.

Compound This work FLAPW Experiment (A-0) (B-0) é
BaTiO; 7.456 7.45% 7.58 8.02 7.58 0.44
SrTiO; 7.303 7.38 7.59 7.58 -0.01
CaTiO3 7.192 7.25 7.35 7.58 -0.23
KNbO; 7.472 7.488" 7.58 8.02 7.71 0.31
NaNbO; 7.396 7.44 7 7.71 7
PbTiO; 7.350 7.35°¢ 7.50 7.72 7.58 0.14
PbZrO; 7.770 7.814 7.72 8.01 -0.29
BaZrO; 7.853 7.924 8.02 8.01 0.01

® Ref. 3.

® Ref. 6.

¢ R.E. Cohen (private communication).

4 Calculated assuming the same density as the tetragonal phase.
© Value not calculated as tables do not include value for 12-fold coordinated Na*t.

plies that both A and B cations are simultaneously sat-
isfied by their oxygen environment. The sign convention
adopted here is such that a positive value of 8, as that
found in BaTiOj3, implies that the hole for the B cation
is stretched beyond its ideal value. In the following we
shall explore the extent to which trends in the behavior
of the perovskite compounds can be correlated with 4.
The importance of competing (A-O) and (B-O) interac-
tions in the perovskites has been emphasized previously

and can be traced at least as far back as Slater’s work on
BaTiO3.28

B. Zero-temperature structures
of the perovskites in the LDA

Having obtained the lattice constant which min-
imizes the energy of the perfect cubic perovskite
structure for each material, we went on to compute
the soft-mode eigenvalues x and eigenvectors intro-
duced in Sec. II, using the frozen phonon method.
Three calculations with different displacement pat-
terns are sufficient to obtain the modes with I'ys
symmetry. We used displacements in the z direc-
tion of the form (0.002,0,0,0,0)a, (0,0.002,0,0,0)a, and
(0,0,0.001,0.001,—0.002)a, where the displacement vector
is listed in the order (vA,vZ v01 vOu »Our). Our results
for k are summarized in column 8 of Table V.

There are a number of interesting observations to be
made about the values of x obtained in this way. First,
we find that « is positive only for BaZrOgs. This result

for BaZrOj3 is in accord with the experimental observa-
tion that this material is stable in the cubic perovskite
structure at all temperatures. We would also expect the
three compounds BaTiO3, KNbO3 and PbTiO3, which
have ferroelectric ground states with primitive five-atom
unit cells, to have negative values of k. This expectation
is confirmed in Table V and Table VI where we summa-
rize which compounds are theoretically ferroelectric, if
we restrict attention to just the zone-center instabilities.
Previous studies on BaTiO3 (Refs. 3 and 7) and PbTiO3
(Ref. 4) have found zone-center instabilities at the the-
oretical lattice constant. However, the previous LDA
study on KNbO3,® using the FLAPW method, found this
material to be stable at the theoretical lattice constant,
although there was a very small ferroelectric instability
when the lattice was strained to the experimental value.
This discrepancy is discussed further at the end of this
subsection.

The remaining compounds in this study exhibit transi-
tions in which phonons become soft at points other than
T in the Brillouin zone. Experimental observations there-
fore do not preclude the possibility that there may be an
unstable I' point phonon; another transition may simply
intervene before the I' point instability has a chance to

" freeze in. For example, Sr'TiOj3 is an incipient ferroelec-

tric and by extrapolating the high-temperature form for
the dielectric response one would predict a transition to a
ferroelectric ground state at 40 K. At atmospheric pres-
sure, however, SrTiO3; makes a transition to a structure
with tilted oxygen octahedra at 110 K.

TABLE V. Interaction parameters of eight perovskites in a.u.
By, B2 By, By, Byyy B,y K a vy o v
BaTiO3 4.64 1.65 1.84 -2.18 -0.20 -0.08 -0.0175 0.320 -0.473 0.176 -0.124
SrTiOs 5.14 1.38 1.56 -1.41 0.06 -0.11 -0.0009 0.150 -0.191 0.093 -0.010
CaTiO3 5.15 1.22 1.29 -0.59 0.06 -0.10 -0.0115 0.023 -0.006 0.013 0.061
KNbLO; 6.54 0.96 1.37 -3.01 0.33 -0.01 -0.0154 0.378 -0.613 0.184 -0.111
NaNbOj 6.63 0.96 1.07 -1.71 0.50 0.00 -0.0124 0.168 -0.256 0.093 -0.041
PbTiO; 4.52 1.97 1.36 -0.78 0.00 -0.03 -0.0129 0.044 -0.045 0.022 0.025
PbZrOs; 5.92 1.37 1.07 -0.22 0.07 -0.01 -0.0156 0.011 -0.013 0.009 -0.003
BaZrOj3 5.52 1.56 1.47 -0.47 0.07 -0.11 0.0078 '0.016 0.000 0.009 0.054
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TABLE VI. Summary of the theoretical and experimen-
tal ground-state structures of the eight perovskites. Abbre-
viations are ferroelectric (FE), antiferroelectric (AF), antifer-
rodistortive (AFD), rhombohedral (R), tetragonal (T'), mon-
oclinic (M), cubic (C), and orthorhombic (O).

Theory  Expt. (primitive) Expt. (complex)

BaTiO; FE-R FE-R

SrTiOs FE-R AFD-T
CaTiOs FE-T o
KNbO3 FE-R FE-R
NaNbO; FE-R FE-M
PbTiO; FE-T FE-T

PbZrO; FE-R FE-R® AF-O
BaZrOs C C

® Extrapolated from the phase diagram of PZT.

A direct comparison between the theoretical and ex-
perimental soft-mode eigenvectors can be made for the
cases of BaTiO3, KNbOj3, and PbTiO3, using the exper-
imentally measured ionic displacements for the ferroelec-
tric phase.2* 3! The results are summarized in Table VIL.
In all cases the soft-mode amplitude is underestimated by
the fourth-order theory. Typically the error is about 30%.
This size and sign of error is not surprising in view of the
fact that our calculations underestimate the theoretical
lattice constant, and that this and other studied3%7
have shown that the soft-mode surface is a sensitive func-
tion of volume. For the case of BaTiOs, our results for
the soft-mode eigenvector are in good accord with the
experimental data, a result we found in our previous
work.3” However, the level of agreement is less satisfac-
tory for KNbOg and still worse for the case of PbTiOj3,
which has the largest spontaneous distortion. We have
tried relaxing the ions in PbTiO3; at the experimental
lattice constant and c/a ratio. The displacement vector
obtained in this case is (0.73,0.32,—0.36,—0.36,—0.32),
which is clearly in much better accord with the experi-
mental data. The soft-mode amplitude was also brought
in closer agreement with experiment, coming out to be
0.913 a.u. Thus, we conclude that for the compounds
with the largest spontaneous distortion, the fourth-order

TABLE VII.
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expansion should not be trusted to describe the energy
surface with quantitative accuracy all the way to the dis-
torted equilibrium structure.

The elastic constants for the eight perovskites were
computed by examining the behavior of the total energy
as a function of strain. Data generated in the previ-
ous section were used to compute the bulk modulus by
fitting a third-order polynomial through the energy vs
lattice constant data. A typical example of the quality
of fit is shown in Fig. 1(a) where we show our results
for the case of PbTiO3. The two remaining indepen-
dent elastic constants, which were taken to be B;; and
By4, were obtained by freezing in strains which lowered
the symmetry of the cells to tetragonal or rhombohedral
symmetry, and again fitting the energy vs strain curves
with a third-order polynomial. At least five different val-
ues of the strain were employed to obtain each elastic
constant in each material.

The elastic constants we have obtained for the per-
ovskites appear to be in good agreement with previous
theoretical results in the few places we have been able to
make comparisons. Singh and Boyer® found a bulk mod-
ulus of 195 GPa in their FLAPW work on KNbO3 which
agrees to about 2% with the value of 199 GPa found
here. Cohen,? also using the FLAPW method, obtained
a bulk modulus of 215 GPa for PbTiO3, which is about
3% larger than our value of 209 GPa. The best available
experimental elastic constants on the cubic phases of the
materials studied here appear to be for SrTiO3.2 The
Landolt-Bornstein tables quote room temperature ranges
of 316—348 GPa, 101—103 GPa, and 119—124 GPa for
€11, €12, and cq4, respectively, which can be compared
with our own values of 389 GPa, 105 GPa, and 155 GPa.
Overall the level of agreement between theory and exper-
iment is about 20%, which is not as good as one would
generally expect from an LDA calculation. However, it
must be borne in mind that the cubic phase of SrTiO3
is unstable, and that the measured elastic constants are
quite strong functions of temperature. For example ac-
cording to the results of Bell and Rupprecht3? c;; in-
creases by about 4% as the temperature is lowered from
room temperature to —160°C, before dropping precipi-
tously as the transition temperature is approached. It
is therefore unclear whether a direct comparison of the

Comparison of theoretical and experimental soft-mode amplitudes and vectors.

Amplitudes are in bohrs, and vectors are normalized to unity.

BaTiOs KNbOs PbTiOs
Theory Expt.® Theory Expt.P Theory Expt.©
E2 (oot 2) 0.20 0.22 0.18 0.32 0.57 0.72
€8 (oot 2) 0.76 0.76 0.80 0.73 0.51 0.33
£9" (Gaott, 2) -0.21 -0.23 -0.31 -0.33 -0.41 -0.35
E21 (fyote, 2) -0.21 -0.23 -0.31 -0.33 -0.41 -0.35
£2111 (foom, 2) -0.53 -0.52 -0.37 -0.38 -0.27 -0.35
Amplitude 0.25 0.31 0.22 0.37 0.54 0.82
® Ref. 29.
® Ref. 30.

¢ Ref. 31.
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theoretical and experimental elastic constants for the cu-
bic symmetry structure is valid and in view of these un-
certainties we were satisfied with the level of agreement
obtained.

The phonon strain interaction parameters Bizz, Biyy,
and By, were found by freezing in a small amount of
the soft-mode vector (typically we used u = 0.005a) and
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computing the changes in the forces on the ions for five
different strains. Results for our calculation of By, in
the case of PbTiO3 are shown in Fig. 1(b). It is appar-
ent from Table V that the most important strain-phonon
coupling arises through the term B, terms which tend
to be large and are always negative. Physically Bz,
measures the extent to which the z-polarized soft-mode
eigenvalue changes on application of an 7; strain. The
negative sign of this coupling constant is reasonable, be-
cause compression of the lattice in the = direction (appli-
cation of a negative 7;) will tend to increase the ion-ion
repulsions and hence raise the soft-mode eigenvalue. In
Fig. 2 we plot By, as a function of the soft-mode an-
gle. It is apparent that B;., shows a marked tendency to
become more negative as the soft-mode angle decreases.
Given that a small soft-mode angle implies large motion
of the B cation, this suggests that Bj., is most sensitive
to the B-O interactions in the cell, and that the B-O
bond stiffens rapidly as it is compressed.

Finally o and v were obtained by freezing in the soft-
mode distortion for a range of values of u in the [100]
and [111] directions and fitting the resulting energy vs
displacement curves with a quadratic polynomial in the
square of the soft-mode coordinate. Typical results for
the case of PbTiOj are illustrated in Fig. 1(c). The re-
sulting sets of parameters are summarized in Table V.
The final two columns of this table give the values of o'
and v’ as defined in Sec. II.

Perhaps the most successful aspect of Table V is that
it correctly predicts the symmetry of the ground-state
structures of all the compounds with primitive five-atom
unit cells. For clarity we have summarized the theoret-
ical and experimental results in Table VI. ' is neg-
ative for BaTiO3; and KNbOj, and so these materials
should have rhombohedral structures as their lowest-
temperature structures according to our fourth-order the-
ory. PbTiO3, on the other hand, has a positive value of
4" and is thus correctly predicted to have a tetragonal
ground state. A further interesting case is provided by
PbZrO3;. While pure PbZrO3 has a rather complicated

0 — ' Pbzrogal
A A% BaZro, |
O  CaTiO,
-1 F PbTiO, A
[ a i
§ = SrTiOg ]
- —2 -
m - Q

I BaTiO, 4
-3+ o -
L KNbO, .

—4 PR RPN IR B

0 20 40 60 80

soft—mode angle

FIG. 2. Strain-phonon interaction parameter Bi.. in
hartree/bohr? against soft-mede angle in degrees.
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ground-state structure, it is found that the solid solution
PbTi,Zr;. O3 (PZT) has a simple ferroelectric structure
in the range 0.1 < z < 1.0. The ground-state structure
undergoes a transition from a tetragonal to a rhombohe-
dral phase at a composition of z about 0.5 as PbZrOj is
added to PbTiO3.! It is therefore also reasonable that +'
should be negative for PbZrOj3 as observed in Table V.
We return now to discuss the discrepancy between our
results and those of Singh and Boyer.® As noted earlier,
these authors found that KNbQO3 is stable in the cubic
structure at the theoretical lattice constant, whereas the
current work predicts k < 0 and a rhombohedral ground-
state structure. The origins of this discrepancy are un-
clear at this time. Part of the explanation may lie in the
higher-quality k-point sets used here, as the trends ob-
servable in Table II suggest that incomplete convergence
of the Brillouin zone integrations leads to an overestimate
of k. Our experience has been that the calculation of the
soft-mode eigenvalue in a ferroelectric is a much more
difficult calculation than the apparently similar problem
of obtaining the phonon frequencies of a semiconductor
such as Si. In the previous section it was demonstrated
that this quantity is unusually sensitive to k-point sets
and plane-wave cutoff. However, this probably does not
account for the whole difference between our results, and
we think it is too early to decide whether the present work
or that of Singh and Boyer is closer to the “exact LDA”
answer. On the one hand, we are clearly in closer agree-
ment with experiment than the FLAPW calculations; on
the other hand, it is to be admitted that the pseudopoten-
tial method makes an additional approximation over the
FLAPW method. This uncertainty highlights the need
for further high-quality calculations by other groups us-
ing independent codes and methods to more accurately
quantify the size of the LDA errors in these materials.

C. Band structures

We have calculated the band structures for each per-
ovskite. In each case we worked with the unit cell with
full cubic symmetry at the theoretical lattice constant.
Figure 3 shows our results for PbTiO3. The energy scale
is in eV, and the origin of energy was arbitrarily set to
be at the valence band maximum. A visual comparison
of our results for this material against those of Cohen
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FIG. 3. Band structure of cubic PbTiO3 for selected high-
symmetry directions.
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FIG. 4. Comparison of the band structures of eight per-
ovskite compounds in the cubic structure from I' to X.

and Krakauer? shows almost no discernible difference. In
Fig. 4 we show the results of our calculation for all eight
materials between I' and X. In each material there is a
fairly narrow set of oxygen 2s bands between about —16.0
and —18.0 eV, and a group of oxygen 2p states between
0.0 and —5.0 eV. Also visible on this scale is a number of
shallow core states associated with the A cation, which
we have labeled individually in Fig. 4. It can be seen
that these shallow core states have the most influence on
the upper valence bands and lower conduction bands in
the case of the lead compounds.

Our band-structure calculation for SrTiOj; is also
in good agreement with the LAPW calculation of
Mattheiss;3* the small differences that do occur presum-
ably reflect the neglect of relativistic effects in the latter.
Our calculations for all eight materials show the same
characteristic flatness of certain bands (e.g., the lowest
conduction band along I to X)) as was found by Mattheiss
for SrTiO3 and several other cubic perovskites.3* The fit-
ting of the perovskite band structures to tight-binding
models has been discussed by Mattheiss,3* Harrison,3®
and Wolfram and Ellialtioglu.3¢ The latter authors relate
the observed flatness of the bands to certain unusual fea-
tures in the density of states and optical response which
appear to be characteristic of two-dimensional systems.

D. Analysis of structural trends

Here, we discuss whether the results obtained above
can be understood on the basis of simple models and
chemical trends. As discussed in the previous subsection,
it is clear that band-structure features are best discussed
in the context of a tight-binding description.3473¢ Here,
our emphasis is on structural energetics.

A number of trends in our soft-mode data can be un-
derstood in a qualitative way in terms of 4, the parameter
introduced in Sec. IV A to reflect the frustration in the
ionic radii. Intuitively we might expect that those mate-
rials with the values of § which are closest to zero should
be the most stable materials in the cubic perovskite phase
and might therefore tend to have the largest values of
soft-mode eigenvalue. In Fig. 5 we plot k in a.u. against
§ in a.u. In order to slightly increase the database of
results we have also included in the plot values obtained
for SrZrO; and CaZrOjz. There does appear to be some
tendency for x to peak around é = 0. The trend is per-
haps most convincing if one focuses on groups of chem-
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FIG. 5. Soft-mode eigenvalues (hartree/bohr?) against
frustration (bohrs) for nine perovskite compounds. Materi-
als with primitive five-atom ferroelectric ground states are
plotted as circles. All other cases are shown as triangles.

ically similar compounds, such as the BaZrOgz, SrZrOg,
CaZrOj series where x decreases steadily as § decreases
from about 0.0 a.u. to about —0.7 a.u., or the BaTiOg,
SrTiO3, CaTiO; series, which is peaked at SrTiO3; with
é = —0.01.

Interestingly, the three compounds with ferroelectric

ground states with five atoms in the primitive cell (de- .

picted with circles in Fig. 5) are the compounds with
significantly positive values of §. While we think that
the above observations form a useful point of view for
analyzing our data, it is important to point out that a
simple analysis in terms of our frustration parameter &
has its limitations. For example the compound KTaO3
has exactly the same value of § as KNbOj according
to the Shannon-Prewitt tables. However KTaOj3 is be-
lieved to be stable in the cubic perovskite structure at
all temperatures.l'® Thus we have an example of a ma-
terial with a substantial positive value of § which is not
ferroelectric and must have « > 0.

We have also considered the behavior of the soft-mode
eigenvector, £ (jsoft, ) as a function of §. For positive
6 the B ions are likely to be “loose” in their sockets be-
cause the A-O interactions expand the lattice beyond the
ideal B-O value. It is reasonable to expect that the mag-
nitude of €2 (j,, ) will be greater than £2(j,, ) in these
circumstances. The converse should hold true for the
situation where § < 0. In Fig. 6 we have plotted the
soft-mode angle defined as tan™? [¢2(j,, &) /€2 (j,, )] in
degrees against ¢ in bohrs. The first point of note is that
all the angles are positive, which implies that in all cases
the A and B cations move in the same direction in the
soft mode. As expected, there is a convincing trend for
the A cation motion to decrease with increasing 4.

Of course, § is a purely “classical” measure of ionic
radius. However, the perovskites are only weakly ionic.
For example, the hopping Vp,4, between nearest-neighbor
O 2p and Ti 3d orbitals is found to be on the same order
as the energy separation between these levels, about 3
¢V.3* Thus it is clear that p-d hybridization must make
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FIG. 6. Soft-mode angle in degrees vs frustration (bohrs).

Symbols as in Fig. 5.

a contribution to the crystal cohesion and must play a
role in the ferroelectric instabilities. One is therefore led
to look for correlations of computed structural proper-
ties with chemical trends and isoelectronic relationships.
However, such trends are not very evident in Table V.
Focusing just on the elastic constants (the only quanti-
ties which do not involve the soft mode), one does see
that the two compounds of the form I-Va-O3 (NaNbOj;
and KNbOj3) have larger values of B;; and smaller values
of B;, than the other six materials. This is most likely
due to the difference in Madelung energies. However, a
systematic dependence of computed quantities upon the
species of the B cation, as might be expected from the
role of the latter in hybridizing with the oxygen, is not ev-
ident. For example, while NaNbO3; and KNbO3 might be
expected to behave similarly on chemical grounds, many
of the quantities listed beyond the third column of Ta-
ble V are quite different. This is because these quanti-
ties all depend indirectly upon the soft-mode eigenvector,
which is quite different for the two materials (for which
the soft-mode angle defined above is 36° and 13° respec-
tively). Thus, despite the expected importance of p-d
hybridization, it appears that simple arguments based
on ionic radii are surprisingly effective.

V. DISCUSSION

Here, we comment briefly on some of the implications
of our results.

We find that the sign of the effective fourth-order cou-
pling is positive in all directions in all eight materials.
(As can be seen from Sec. II, this effective fourth-order
coupling ranges from a’ to o’ ++'/3, depending on direc-
tion; Table V shows that this quantity is always positive,
even after renormalization by strain coupling is taken
into account.) In the Landau-type theories of the fer-
roelectric phase transition, the sign of the fourth-order
term in the order-parameter expansion of the free energy
determines whether the transition is of first or second
order.! Of course, at T > 0 the free energy is renormal-
ized by anharmonic coupling of the soft-mode variable to
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other phonons, which is not included in our calculations.
Thus, at least for the compounds studied, we conclude
that coupling to strain alone is insufficient to drive the
fourth-order term negative as required for a first-order
transition. In those cases where the transition is observed
to be first order, the anharmonic phonon couplings must
be responsible.

The bare coupling constant v is almost always found
to be negative in the materials studied here. The strain
renormalizations were always found to increase the value
of this quantity (i.e., 7' > 7), and in a couple of cases
cause it to switch sign. These observations serve to high-
light the important consequences of strain coupling in
the perovskites, as emphasized previously by Cohen and
Krakauer? in their study of PbTiO;. Moreover, they pro-
vide a possible explanation for a well-known asymmetry
in the observed sequences of phase transitions: namely,
that those materials like BaTiO3 which are rhombohedral
at T' = 0 typically pass through tetragonal and some-
times orthorhombic phases on the way from the cubic
phase, while those materials such as PbTiO3 which are
tetragonal at T = 0 usually transform directly from the
cubic phase. In the former case, the sequence of tran-
sitions is usually rationalized in terms of an eight-site
model, in which the order parameter just above the tran-
sition to the cubic phase is assumed to spend most of its
time fluctuating among the eight minima in the (111)
directions. Just below the transition, it freezes onto a
subset of four of these minima, with average (100) orien-
tation and tetragonal symmetry; only at very low tem-
perature does it freeze into a single minimum and acquire
rhombohedral symmetry. This scenario requires that the
sites along the (111) directions be minima even in the cu-
bic phase, before the strain develops. That is, it requires
that v and 7' be of the same sign (in this case, negative).
Insofar as 4" > 4, this is automatic for rhombohedral
T = 0 materials, which must have 4/ < 0. If both v and
v’ were of positive sign, one might imagine a scenario in
which a “six-site model” would give rise to a transition
from cubic to rhombohedral, orthorhombic, and tetrago-
nal, as the order parameter freezes onto subsets of three,
two, and one (111) minima, respectively. However, for
PbTiO3 we have v and 7' of opposite sign, so that such
a scenario is not plausible. If this situation is typical
of materials with tetragonal T = 0 structures, it would
explain why the reversed sequence is not observed.

We emphasize that we do not have in hand all the
elements needed to construct a theory of the phase tran-
sition from first principles. Nevertheless, we have ob-
tained many of the ingredients that would enter such a
theory.? In particular, we have calculated virtually all
the relevant on-site couplings, including anharmonic and
strain couplings. The most pressing need now is for cal-
culations which will determine some of the intercell cou-
plings, especially those at harmonic order. These can
be extracted from LDA calculations for phonons away
from the Brillouin zone center, using either the supercell
frozen phonon approach or a linear response approach.
Thus it appears that it may not be long before a ther-
modynamic theory of the phase transitions in perovskite
ferroelectrics may be constructed from first principles.

Of course, the results presented here remind us of a
serious limitation of the first-principles LDA approach,
connected with the extreme sensitivity of some calcu-
lated quantities to the lattice constant. As discussed in
the body of the paper, we find that LDA underestimates
lattice constants by approximately 1% in perovskites, as
is common for other materials. Unfortunately, because of
the proximity to the ferroelectric phase transition in the
perovskites, this 1% error can translate into large errors
in such quantities as the magnitude of the T = 0 dis-
tortion, the spontaneous polarization, and ultimately, in
the ferroelectric transition temperature. However, there
is no reason to expect it to have a radical effect on many
of the other calculated quantities, such as the values of
the anharmonic and strain couplings and the soft-mode
eigenvectors. If and when it becomes possible to cal-
culate pressure-temperature phase diagrams from first-
principles LDA calculations, we anticipate that the pres-
sure axis may have to be artificially shifted to accommo-
date the ~1% lattice-constant error. But we are opti-
mistic that the structure of the phase diagram (sequence
of phases, first-order vs second-order transitions, bound-
aries, etc.) will otherwise be reliable.

VI. CONCLUSIONS

We have performed accurate first-principles pseu-
dopotential calculations on eight perovskite compounds
within an ultrasoft-pseudopotential approach and the
LDA. We have shown that it is possible to devise a com-
putationally tractable scheme to compute the soft-mode
total-energy surface correct to fourth order in the soft-
mode displacement. OQur convergence tests highlight the
need for extreme accuracy in the k-point sets in these
calculations.

We find that zone-center instabilities in the cubic per-
ovskite structure are very common, and that all the com-
pounds studied here which have an experimental phase
transition also have a zone-center soft mode at the the-
oretical LDA lattice constant, even in cases where the
observed transitions are caused by soft modes away from
the I' point. We find that the LDA correctly predicts
the symmetry of the ground-state structures of BaZrOj3,
BaTiO3, KNbO3, and PbTiO;. The remaining com-
pounds have ground-state unit cells with more than five
atoms, and the determination of their ground states
therefore lies beyond the scope of the present study.
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APPENDIX A

Our objective here is to solve the matrix equation for
the strain 7; which minimizes the total energy for a given
set of u,. The symmetry of the problem becomes most
readily apparent if we define a new vector y; with compo-
nents y; = uiv Y2 = u!ZI, Ys = ’U,i, Yg = UylUz, Y5 = UzUg,
Ys = UzUy. With this notation Eq. (14) can be written

as
0= Byl + % > Ciys
i j

where B and C are both 6 x 6 matrices with the structure

PQQOO0OO
QPQOOO
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(A2)
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oo
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0
R
0

wmo o
oo o

00000R

For the B matrix P = B;;, @ = B2, and R = By,, while
for C we have P = By,s, Q = Biyy, and R = 2By,,.
Because M is a symmetric matrix it can be written as

B({ua}) = B + 2({ua}) - § 4 [ZA(C)2'2A7}(B)Z'ZA(C)Z'] ;.

For a symmetric matrix we have Z'Z = 1 and thus it is

obvious that the matrix in square brackets is just another
2 2

v,
—, 2-%, and
. B’ M ’

4% Given the relationship between the eigenvalues and

matrix of the form M with eigenvalues

for
P, @, and R the components of this matrix are just

1 /C? v?
P=2(=+4=2 A6
i (%), (A6a)
1/C% _u}
Q_E(B —2m), (A6b)
and
R=4% A
= —r, 6¢
Pr (A6c)

It is now simply a matter of multiplying out the matrix
term in Eq. (A5) and using the definition of y; in terms
of u, to derive Eq. (16).

APPENDIX B

In this appendix we describe the conjugate-gradient
(CG) scheme which was employed in the calculations pre-
sented in this paper to minimize the Kohn-Sham func-
tional. Probably the best known CG method for use
in fast Fourier transform (FFT) based pseudopotential
codes is that due to Teter, Payne, and Allan®" which

M = ZAM)Z', (A3)

where A(M) is the diagonal matrix of eigenvalues of M
and Z is the matrix of orthonormal eigenvectors. The
eigenvalues are just P +2Q (1), P — Q (2), and R (3),
where the number in parentheses gives the degeneracy. In
terms of the bulk and shear moduli defined in Egs. (17a)—
(17f) the eigenvalues of B are B, 2, and p,, while the
eigenvalues of C are C, 24, and 2v,. The eigenvectors of
a matrix of the form M can be chosen to be independent
of the values of P, Q, and R. For example one simple
choice is

0 —%000
1 1 2000
V3 V2 6
1 1L 1L g00
0 0 0 100
0 0 0 010
0 0 0 001

It is clear that the expression for E given in Eq. (15) can
be written as

(A5)

—

has been applied with great success to a wide range of
problems. This method minimizes the total energy in a
band-by-band fashion. Orthogonality is maintained by
projecting out from the conjugate direction h all compo-
nents of the vector which are parallel to orbitals at the
current k point. The algorithm is further improved with
preconditioning based on the diagonal dominance of the
kinetic energy at large reciprocal lattice vectors. Teter
et al. have emphasized the importance of updating the
Kohn-Sham Hamiltonian self-consistently on each itera-
tion in order to control the “charge sloshing” instabilities
caused by the divergent behavior of the Coulomb inter-
action at long wavelengths.

We have chosen to formulate our CG scheme using
a generalization of the Kohn-Sham energy functional to
nonorthogonal orbitals in a manner which is very simi-
lar to an idea which was recently proposed by Galli and
Parrinello.3® Two major benefits arise from this general
functional. First, the CG algorithm does not lend itself
easily to constrained minimization problems, particularly
if one should wish to move away from band-by-band types
of schemes. By choosing to work with nonorthogonal
orbitals, we dispense with the need to impose the or-
thogonality constraint during the course of the minimiza-
tion process. Second, the nonlocal overlap operator S
which occurs in the Vanderbilt ultrasoft-pseudopotential
scheme is easily incorporated into the formalism.

A second major ingredient of our method is to mini-
mize the Kohn-Sham functional with respect to all the
wave-function degrees of freedom simultaneously. In the
one-band-at-a-time approach it is fruitless to iterate any
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given band to self-consistency, because iterating on later
bands changes the total potential, destroying the self-
consistency of previous bands. The sequential approach
limits the number of CG steps which can usefully be per-
formed on any given band to about 5.37 Within the ap-
proach preferred here, where all bands at all k points are
changed on each iteration, this self-consistency consider-
ation does not come into play and as many CG steps as
desired can be performed before a restart. Our experi-
ence has been that one set of 20 steps of the CG algorithm
is considerably more efficient that four sets of 5 steps and
that quite substantial gains in performance can therefore
be made.

In the following we shall develop our formulation for
the case where the number of electrons in each occupied
band at each k point is the same. This restriction is not
necessary and the question of how to handle the more
general case of variable occupation has recently been ad-
dressed by Arias et al.3® We shall also concentrate on the
case where we have a single k point, as the extension to
the multiple k-point case is trivial. Within the ultrasoft
framework the Kohn-Sham functional is written in terms
of a set of linearly independent nonorthogonal orbitals

{¢:} as
Eii[{#:}, {R1}] = Z(qs,-

11 [ [ a2

+Eyoln] + / drVion (e)n(r) + U({Ry}),

-1v2 4+ VL | ¢;)

(Bla)

where the charge density n(r) is given by

=Z¢f(r s

+ZZQ r)(¢: | Brm)(Br | &), (Blb)
i nml
with
¢ = Z¢jTji (Blc)
and
[T_l]ji = (¢; | 5| ). (B1d)

In Eq. (Bla) Vi, is the nonlocal potential, V{i°® is the
local ionic potential, ¢ is an index running over all occu-
pied bands, n and m are indices running over projector
functions | 8) on a given atom, I is an index running over
atoms, and U({R;}) is the ion-ion interaction energy. A
complete discussion of all of the meaning of the terms
in Eq. (Bla) can be found in Ref. 14. Conventionally
the Kohn-Sham energy in the Vanderbilt scheme is writ-
ten in terms of a set of S-orthonormal orbitals.’* The
energy computed in Eq. (Bla) is identical to that com-
puted with the conventional expression using any set of
of S-orthonormal orbitals which span the same space as
{¢:i(r)}. Note that the above expressions are equally ap-
plicable to the more usual plane-wave formulations using
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Kleinman-Bylander potentials: This limit is recovered by
setting § to the unit operator and the QI (r) functions
to zero.

The functional derivative of E.,; with respect to ¢!
(Ref. 38) is given by

6Etot
Ll

=H|3) - 818 | 515, (B2

where H is the usual Kohn-Sham Hamiltonian in the
Vanderbilt ultrasoft scheme.'* Note that since

(o | S| é;) = 8k; we have (¢ | 5‘3:“) = 0, which im-

plies that the projection of any occupled orbital on the
gradient direction is zero. Physically, adding any amount
of the state ¢ to the state ¢; does not change the sub-
space spanned by the occupied orbitals and thus leaves
the total energy unchanged.

We start our CG iteration with a set of S-orthonormal
{¢:} obtained from a random number generator or a pre-
vious calculation and compute a G-space diagonal pre-
conditioning matrix K following the algorithm of Teter
et al.3” A standard preconditioned CG algorithm is then
used to minimize the Kohn-Sham functional. Thus on
iteration n + 1 our gradient is just

n+l __ _ ‘SE{;:Jt
- b
oo}
where it is implicit that the gradient is to be evaluated

with the orbitals {¢?'} obtained from the nth iteration.
The conjugate search direction h™*! is

(B3a)

h"*t!1 =K .g"*! 4+ 4*h", (B3b)
where
() K g
n — B3C
! (8")'-K.g" (B)

The line minimizations along the conjugate directions are
performed using a variant of the method suggested in
Ref. 37. We assume that the energy functional varies
quadratically in the region of interest. The total en-
ergy and gradient at the point in function space {¢}}
are known which fixes two parameters of our quadratic
form. The final parameter is obtained by taking a small
step along the direction h®*! and recomputing the self-
consistent total energy. Typically the size of the trial
step is simply taken to be about the size of step which
minimized the function on the previous step.

In order to illustrate the benefits of iterating on all the
degrees of freedom at once we have performed two cal-
culations on a five-atom unit cell of BaTiOj; using ten k
points in the irreducible wedge of the zone. The first cal-
culation proceeded by minimizing one k point at a time
using five CG steps at each k point, where as the second
calculation iterated on all k£ points at once and used 15
CG steps between restarts. The results are illustrated in
Fig. 7. Each pass through all the bands was counted as
five iterations in the k-point-by-k-point case so compar-
isons could be made. Relaxing all degrees of freedom at
once speeds the calculation by about a factor of 2.
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FIG.7. Error in total energy per unit cell in hartrees vs it-
eration number using the k-point-by-k-point method (dotted
line) and all-k-points-together approach (dashed line).

The operation count per band per iteration is better
for a method which updates all the wave-function coeffi-
cients together because the Hartree and exchange corre-
lation potential need to be updated much less frequently.
This is of particular importance in the Vanderbilt ultra-
soft scheme, because augmentation of the density would

become a major cost of the calculation if it were done
on a band-by-band basis. When all the bands are up-
dated simultaneously the augmentation overhead in the
ten k-point calculation discussed above took less than
2% of the time on each CG step. For the size of unit
cell considered in this paper the most efficient scheme
that we have found for computing the regular contribu-
tion to the charge density is to explicitly construct an S-
orthonormal set of orbitals {1;} in reciprocal space which
span the space of {¢;}. Thus we evaluate Y, ¢! (r)¢;(r)
in Eq. (B1b) as ), 4} (r)%;(r), which can be done with
a single FF'T per band.

The major drawback of this scheme is that the amount
of gradient and conjugate-gradient direction information
which must be stored is substantially increased. How-
ever, we have found that it is possible to structure
the codes so this information is read and written to a
disk, without incurring substantial input-output penal-
ties, both on workstations and on the Cray YMP (where
we utilized a solid-state disk). In our current implemen-
tation of the scheme we use one major work array di-
mensioned to all the wave functions at all k¥ points and a
second smaller array which is sufficient to hold the wave
functions at a single k point. Three disk scratch files
were used to store current values of {¢;}, the gradient
direction, and the conjugate direction.

*Permanent address: Biosym Technologies Inc., 9685 Scran-
ton Rd., San Diego, CA 92122.
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We consider the change in polarization AP which occurs upon making an adiabatic cha
Kohn-Sham Hamiltonian of the solid. A simple expression for AP is derived in terms of tl
band wave functions of the initial and final Hamiltonians. We show that physically AP can be
ed as a displacement of the center of charge of the Wannier functions. The formulation is s
applied to compute the piezoelectric tensor of GaAs in a first-principles pseudopotential calcu..

Experimentally changes in the electrical polarization of
solids can be induced by various means including applica-
tion of a strain (piezoelectricity) or changes in tempera-
ture (pyroelectricity). Ferroelectrics are a technologically
important class of materials whose polarization can be
switched by application of an electric field.! To date
there have been relatively few theoretical attempts to cal-
culate these quantities from a quantum-mechanical start-
ing point. In this paper we derive simple formulas for
calculating finite changes in the polarization of a crystal-
line solid. The method is ideally suited to first-principles
density-functional investigations of polarization effects.

We begin by considering the change in the electronic

Ui Do i )(;b

LR
valing:
n:etsret
cessfel
O,

polarization per unit volume of a c1- stal wlich is indu e
upon making an adiabatic change n the seif-cosistort
Kohn-Sham potential. We parametsize the changsz in “h:
potential with a variable A which i< arringed 10 tuv:
values O and 1 at initial and final values of the petentia,
respectively. In the following we shall specialize < th:
case where the change in potential preserves the vaisie-
tional symmetry of the solid. The formalism developed
below will therefore be applicable for compuating AP w:ta
macroscopic electric field E held to be zero. If the nz-
terial is an insulator for all values of A in the range -1
then we have

ifq.# Mo =
Nam, 2 22 3

n=lm=M+1

dP, /Oh=—

where a is a Cartesian direction, m, and g, are the elec-
tron mass and charge, N is the number of unit cells in the
crystal, () is the volume of a unit cell, f is the occupation
number of states in the valence band (in spin-degenerate
systems f =2), M is the number of occupied bands, p is
the momentum operator, and V ) is the Kohn-Sham po-
tential. A heuristic derivation of Eq. (1) has recently
been given by Resta.” Resta proposes that we compute
the total change in polarization per unit volume, AP, us-
ing
1
AP= [ (3P /3M)dA 2)
0

Physically, AP arises from the flow of polarization
currents in the solid and Eq. (1) may also be regarded as
the adiabatic limit of a Kubo formula for the current.® It
is somewhat surprising that the change in polarization
can be computed without explicitly stating how the crys-
tal is terminated. The fundamental justification for tak-
ing the thermodynamic limit in Eq. (1) rests with the fact
that the current response of an insulator depends only on

the local environment.*? |

M 1
AP,=—(ifg,/87°) 5. fBdefodk[(au ) /3k 4| du
n=1

where the integral over k extends over any primitive cell
in reciprocal space. The one-dimensional (1D) analogue
of Eq. (4) has been derived previously by Thouless’ in a

47

(el

1oV 7an ) N

c.c. , 1)

|

The expression for 3P /3A can be recast in a form in
which conduction-band states do not explicitly appear us-
ing an argument developed by Thouless et al.® in their
analysis of the quantum Hall effect. We introduce a set
of cell-periodic functions, u{%), with a choice of phases
such that u ' are analytic in both k and . The matrix

elements in Eq. (1) can be rewritten as

(WIpa v ) = M1 /0k o, B V) (3a)
and
W|aV‘AS’/ax|¢ =(uMl[8/00,H P ul))
(3b)
where the A {*' is the cell-periodic Hamiltonian
A M=(1/2m,)(—i#iV+#k)+ V¥(r) . (3c)

Substituting Egs. (3a) and (3b) into Eq. (1) it is straight-
forward to show by analogy with Ref. 6 that

/oMY —(u ) /dAlout) 8k )], 4)

f
slightly different context for the case of noninteracting

electrons where the formal similarities with the quantum
Hall effect are particularly striking. For example, in a

1651 ©1993 The American Physical Society
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D sysrerr wvits p riod a, Stokes’s theorem allows us to
ATite Se g i polarization per unit length as

8

‘(
AP == _), , ¢C 2 d,r (u(}‘)la/af |u(l)
2 , =1

(5)

vhere - is ¢ two-c >mponent vector with elements (A, k)

and the conour f integration C is around the loop
w7 spaz: fixm (O,m/a)—(l,w/a)—(1,—m/a)
-0, -1, a)---10. 7/a). The quantity in curly brackets

can be recognized as the change in Berry phase for ficti-
dous adiaba: ¢ eve lution of the cell-periodic wave func-
dion arcund -1 loc p C.8° Thouless has observed that the
contour iniezre] ir Eq. (5) is quantized in the special case
where the potentici is the same at A=1 and 0. In these
circumstanc:s the quantity in curly brackets measures
the change i1 tae j hase of the wave function at any given
real-space pont as (A, k) is taken around C. Given that

the cell-periodic parts of the wave function can be chosen
to be analytic in k and A this change in phase must be an
integer multiple of 277. We therefore conclude that the
polarization per unit length of a 1D system can only
change by an integer multiple of fe for adiabatic changes
in the Hamiltonian for which VX =V} An analogous
result for 3D systems will be derived below.

The physical content of Eq. (4) can be made more
readily apparent by working in a gauge where the wave
functions are periodic in reciprocal space, i.e.,
i (r)=¢M g ,(r) for all reciprocal lattice vectors G.
In terms of the cell-periodic functions in such a gauge we
have

ul(r)=eCrudls (1) . (6)
We remark that the gauge condition of Eq. (6) does not
uniquely define the phase of the wave functions. In-
tegrating Eq. (4) by parts we find that

A f dk {[(u8/3k, Jul)) 13— fdk Cu|d/onlul)) (7)

With our chowce of gauge, {u{})[3/3Au{})) is periodic in
k. The gradicnt of this quantity integrated over the Bril-
louin zone (BZ) is therefore zero, so the second term in
Eq. (7) makes no contribution. In the periodic gauge we
therefore arrive at the conclusion that

AP=p—-p0 (8a)

where

=(ifq,/87")

n

f dk(uila/8k,|uil)) (8b)
-1

The integral on the right-hand side of Eq. (8b) is close-
ly related to the Berry phase of band n, a quantity which
has been recently introduced by Zak and co-workers.!°
The form of Eq. (8) is particularly simple when written in
terms of the Wannier functions W *(r) of the occupied
bands.'® The Wannier functions depend on the particular
choice of phases used in the periodic gauge. We define
the Wannier function using

W r—R)=(VNQ/87°) [ dke* T Riy{r)
BZ
(9a)

which implies that

u(r) I/VN)Ee r‘“W“(r R), (9

where the sum over R runs over all real-space lattice vec-
tors. Substituting Eq. (9b) into (8b) we find the simple re-
sult that

M
3 [wPin)idr . (10

n=1

M=(fq,/0)

Physically, Egs. (8a) and (10) state that the change in po-
larization of the solid is proportional to the displacement

[

~ of the center of charge of the Wannier functions induced

by the adiabatic change in the Hamiltonian.

Returning to the case where the Hamiltonians at A=0
and 1 are identical, 4{%(r) and u{})(r) can at most differ
by a phase factor so that

wi(r)=e" % Or) . (11)
In this limit Eq. (8) reduces to

M
AP,=—(fq,/87) S fBdeaek,, /dk, . (12)
n=1

With our periodic choice of gauge e' ¥ must be periodic
in k. The most general form for the phase angle under
these circumstances is 6y, =B, +k-R,, where B, is

periodic in k. We thus conclude that

M
AP=(fg,/Q) 3 R, . (13)

n=1

The change in polarization per unit volume for paths
where the Hamiltonian returns to itself is therefore quan-
tized in units of (fq, /Q)R. A particularly simple case to
consider is the magnitude of AP for paths of the form

V& (r)=V&A(r—AR), which physically corresponds to a
translatlon of the crystal. In this case it is straightfor-
ward to verify by explicit calculation that Eq. (8) yields
AP=(fq,/Q)MR, as one would expect on physical
grounds.

We have in Eqgs. (8) and (13) the rather remarkable re-
sult that AP for a crystal can in principle be determined,
to within a factor of (fe /Q)R, from a knowledge of the
valence-band Kohn-Sham wave functions at A=0 and 1.
In practice the arbitrary factor of (fe /Q)R can often be
eliminated by inspection because one is usually interested
in polarization changes where |AP| <<|(fe /Q)R,| where
R, is the shortest nonzero real-space lattice vector. In
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other cases any uncertainties introduced by this factor
can always be removed by dividing the change in the
Hamiltonian into a number of subintervals.

Direct evaluation of AP via Eq. (8) is cumbersome in
numerical calculations, because in practice we only com-
pute the wave functions at a finite number of points in the
Brillouin zone, and in general there will be no particular
phase relationship between the eigenvectors generated by
the diagonalization routine. In actual calculations we
circumvent this difficulty using the following strategy.
First we pick a direction parallel to a short reciprocal-
lattice vector of the solid, Gy. We choose the primitive
cell for the k-space integration to be a prism with its axis
aligned along G. The component of AP directed along
G can be written

AP =P|"—P{", (14a)
where, in an obvious notation
P(M= dk dk < (A) (M) .
M=/, L2 J, " aky{uls aky |“en
(14b)

The integration in the perpendicular direction poses no
special problems and can be performed by sampling over
a 2D mesh of k points generated, for example, using the
Monkhorst-Pack method.'> To perform the integral over
k| at each point in the k, mesh we compute the cell-
periodic parts of the wave functions at the string of J k
points at kj=kl+jG“/J where j runs from 0 to J —1.
We then compute the variable ¢ (k, ) defined through

J-1
$M(k;)=Im lanet((u%"m|u¥;’H,n>) , (15
j=0
L. —iGy-
where it is understood that u{?),=e 1"y . The
J? 0’

determinant in Eq. (15) is that of the M XM matrix
formed by allowing n and m to run over all valence
bands. With an analytic choice of cell-periodic wave
functions it can be verified that

¢“"(kl)EJlim )

LM 'Glll A
==i 3 [ Vdky(ui)lasaklull) (162)
n=1
so our expression for P{! becomes
PV =—(fq,/87") [ LAk (16b)

It is straightforward to confirm that the product over jin
Eq. (15) is independent of how the phases of the wave
functions are chosen. Changes of the phase of u™ can
change the value of the integral in Eq. (16) by an integer
multiple of 27. Correspondingly the arbitrary constant
in the definition of ¢{*'(k,) given in Eq. (15) arises from
the fact that the imaginary part of the log of a complex
number is only defined up to a constant multiple of 2.
In practice the arbitrary constant is removed by compar-
ing ¢V(k,) with ¢{V(k,) using the argument outlined in
the previous paragraph.

We have in Egs. (14)-(16) all the nz- di: 15 recessrr
for computing polarization changes 12 nrz:: cal ciles a-
tion. Within this approach the n :¢ o upercolls -
linear-response techniques is comp tely & oided.! Ta:
method is ideally suited to moder. =zlc.irvic - ctir:
methods based on iterative diagor 1zatizr techr cu s,
which concentrate on computing t : vier:z-bend v v
functions only.!*

We illustrate the approach by r1311i12 the ras
verse effective charge tensor and pi¢ o:le:tri: constant 5°
GaAs in a first-principles pseudo >entizl :alcu aticn
The effective charge of GaAs may b det:nured by co.a
puting the change in polarization ‘tizh 5 cuzec n
making a small displacement of or subia ticz wih th
boundary condition E=0. For exa : ple, if we mo.e the
Ga sublattice by a vector u, then th electronic conriba
tion to the polarization difference I twesn the Jdisrortac
and undistorted structures is

AP=(e/Q)Z &V , a7
where Z & is the electronic contril ttion 1 the effictive
charge. The piezoelectric tensor ¥ i. the strain derivative
of the polarization under boundary .cnditisns of E==0."
In the zinc-blende structure there is - nly on: independen:
component of the piezoelectric tensor, y,,. The
piezoelectric tensor can be thought «f as the sum of two
independent terms. The first term, which we denote by
{9 following Ref. 11, arises from the change m pclariza-
tion when the ions are subjected to a nomog:=neous sirain
The second contribution owes its origin to the relative
displacement of the sublattices, and can be expressed in
terms of the effective charges and iniernal strain parame-
ters.*!! It is shown in Ref. 11 that

(a/e)y =7 =(a2/ey'\Q+2Z7,¢, (18)

where £ is the internal strain paramerer.

Our first-principles calculations used norm-conserving
nonlocal pseudopotentials.”* We note in passing that,
strictly speaking, a nonlocal potential causes a
modification to the momentum operator in Eq. (1).> How-
ever, in this situation there is a precisely compensating
change to the Hamiltonian for the cell-periodic part of
the wave function, and equations from Eq. (4) on remain
correct at they stand. Our calculation treated exchange
and correlation in the local-density approximation using
the Wigner form. The wave functions were expanded us-
ing a 20-Ry plane-wave cutoff. All calculations of the
self-consistent Kohn-Sham potential were performed
with a (4,4,4) Monkhorst-Pack mesh.!? Calculations in
the cubic structure were performed at the theoretical lat-
tice constant a, which came out to be 5.576 A with the
above parameters. For the calculations of the effective
charge we displaced the Ga atom a distance of 0.01¢ in
the (001) direction and computed the polarization change
in the z direction. The integration mesh for computing
AP used 16 k points in the k; mesh and a string of 10 k
points in the parallel direction. We obtained ¥} by com-
puting the change in polarization in the z directions in-
duced by applying a 1% xy shear strain to the crystal.

The results of our calculation are summarized in Table
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of Z ¢, (electronic plus ionic contribu-
be 1.984, in excellent agreement with
obtained from pseudopotential linear-
ns.!! Both sets of theoretical values of
smaller than the experimental value.
on the strained crystal yielded a
352. The value agrees to better than
sult obtained from linear-response
erall value for the piezoelectric con-

- .28, compared with an experimental
" he agreement between our calculation

‘easonable, given that the two terms in
trong tendency to cancel. We have
alculation is converged with respect to
ne-wave cutoff, and that the polariza-
:ar in the applied perturbation. We at-
differences between our results and
i, Baroni, and Resta!! to the use of
:entials and parametrizations of the ex-
tion potential.
e note that it is tempting to physically
ty P**) defined in Eq. (8b) as the abso-
f the perturbed crystal. Of course it
¢ understood that the polarization,
7, would only be well defined modulo
onditions under which such an
sful will be the subject of a future com-

TABLE 1. Theoretical
response of GaAs.

and experimental piezoelectric

Linear
This work response® Experiment
a (A) 5.576 5.496 5.642
'3 0.542 0.528 0.55
VAR 1.984 1.994 2.16
(a2/e)y'y —1.352 —1.405
Y14 —0.28 —0.35 —0.32

2Reference 11.

munication.

In conclusion, we have shown that adiabatic changes in
the Kohn-Sham Hamiltonian lead to polarization
changes in the solid which can be computed in terms of
the initial and final valence-band wave functions of the
system. This result forms the basis for a scheme for com-
puting polarization changes of solids within the context
of first-principles total-energy calculations.

We would like to thank Karin Rabe and Raffaele Resta
for stimulating discussions at the inception of this work.
This work was supported by the Office of Naval Research
under Contract No. N00014-91-J-1184.
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Giant LO-TO Splittings in Perovskite Ferroelectrics

W. Zhong, R.D. King-Smith,* and David Vanderbilt
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855-0849
(Received 30 November 1993)

We perform a first-principles investigation of the role of Coulomb interactions in eight ABO3
cubic perovskite compounds. The predicted spontaneous polarization and the LO and TO phonon

frequencies are found to be in good agreement with experiment.

Anomalously large dynamical

effective charges give rise to very strong mixing of the mode eigenvectors on going from the TO to
the LO case, resulting in a “giant LO-TO splitting” in the sense that the soft TO mode is most
closely related to the hardest LO modes. The results help explain the extreme sensitivity of these

compounds to electrostatic boundary conditions.

PACS numbers: 77.84.Dy, 63.20.Dj, 77.22.Ej

Ferroelectric materials are characterized by a switch-
able macroscopic polarization. Their importance stems
not only from technological considerations, but also from
a fundamental interest in understanding the structural
phase transitions and symmetry breaking involved [1].
The perovskite compounds are an extremely important
group of ferroelectric materials. Their simple structures
allow extensive theoretical investigation. The ferroelec-
tric transition occurs as a result of a delicate balance be-
tween long-range Coulomb interactions and short-range
forces. Of particular interest is the fact that the long
range of the Coulomb interaction can make the ferroelec-
tric instability very sensitive to details of domain struc-
ture, defects, and boundary conditions. The splitting
between the frequencies of the longitudinal optical (LO)
and transverse optical (TO) phonons is another direct
effect of such interaction. The Born dynamical effective
charges, which reflect the local dipole moments which de-
velop as atoms are moved, play a central role in the study
of these Coulomb effects.

The role of Coulomb interactions in perovskites
aroused interest as early as the 1960s. The seminal work
by Axe suggested anomalous effective charges, based
on empirical fitting to experimental mode strengths [2].
However, the quantitative accuracy of that approach is
limited by the approximations involved, and by uncer-
tainties in the interpretation of experiment. It is natural
to turn to first-principles calculations for a deeper under-
standing and more accurate predictions. However, early
band-structure calculations [3] and more recent work fo-
cusing on total energies [4-8] do not directly address the
role of Coulomb interactions. In part, this is because a
method for direct calculation of electric polarization has
only recently become available [9]. Recent work using
this new method [10] and linear response theory {11] con-
firmed anomalous effective charges, but the results were
limited to two compounds, and their effects on the dy-
namical properties and soft phonon instability were not
addressed.

In this Letter, we report a systematic series of first-
principles calculations of Born effective charges Z* and

3618

their effect on the optical phonon modes. We find the
anomalously large Z* to be a general feature of perovskite
compounds. This leads to large spontaneous polarization
for small distortions. Our calculated optical phonon fre-
quencies at the I' point for both TO and LO modes are in
good agreement with experiment. The eigenvector anal-
ysis reveals that, in general, there is no correspondence
between individual TO and LO modes. However, the
softest TO mode usually involves the largest mode ef-
fective charge and can couple strongly with the electric
field, thus giving an unexpectedly large LO-TO splitting.
The strong coupling to the electric field can easily destroy
the ferroelectric state. We find that the calculated criti-
cal depolarization factor is only = 0.1. This explains the
remarkable sensitivity of the ferroelectric state to domain
structure and boundary conditions.

The perfect perovskite structure shown in Fig. 1 is cu-
bic with general formula ABOg, where A and B are metal
atoms. We concentrate on eight perovskite compounds:
BaTiOg, SI‘TiOg, CaT103, KNbOg, NaNb03, PbTiOg,
PbZrO3, and BaZrO3;. We begin with a calculation of

l1

U
07

FIG. 1. The structure of cubic perovskite compounds
ABOQOj3. Atoms A, B, and O are represented by shaded, solid,
and empty circles, respectively. The small vectors indicate
two inequivalent directions for the O atoms.
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A
=
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the Born effective charges from finite differences of the
bulk polarization P under small distortions. The Born
effective charge tensor Z7, is defined through the equation

N
€ *
6P:—Q—§:Zm~6um. (1)
m=1

Here, A is the number of atoms in the primitive unit
cell, du,, is the first-order change of the position vector
of the mth basis atom, and € is the volume of the unit
cell. Resta et al. [10] have shown that P is linear in u,,
to a good approximation.

The calculation of polarization follows the new pro-
cedure recently introduced in Ref. [9]. The electronic
wave functions are obtained from density-functional the-
ory in the local density approximation (LDA), using Van-
derbilt’s ultrasoft pseudopotential [9,12,13], which allows
highly accurate calculations to be performed with a low
energy cutoff. A generalized Kohn-Sham functional [8,14]
is directly minimized using a preconditioned conjugate
gradient method [8,15]. Calculations of structural prop-
erties and convergence tests have been presented previ-
ously [8]. The electronic polarization P is calculated us-
ing a 4 x 4 x 20 k-point mesh with the dense grid in
the direction parallel to P to achieve high accuracy. The
effective charge tensors for the ABOj perovskite com-
pounds are then calculated from the polarization differ-
ences between perfect and distorted structures.

For the cubic structure, the metal atoms A or B are lo-
cated at centers of cubic symmetry, so that their effective
charge tensors are isotropic. The oxygen atoms are lo-
cated at the face centers and thus have two inequivalent
directions either perpendicular or parallel to the cubic
face, labeled 1 or 2, respectively, in Fig. 1. The oxygen
effective charge tensors are thus diagonal, with element
Z% for direction 1 and Zj for directions 2. Since the
formulation we use here satisfies the acoustic sum rule
Y m Ly, = 0 exactly, we need three distorted structures
to get all the Z7 ’s. The amplitudes of our distortions are
typically 0.2% of the lattice constants.

The calculated Born effective charges are listed in Ta-
ble I, together with results from other groups. Our re-
sults are in good agreement with previous calculations
for KNbO3 using finite differences of polarization [10],
and for BaTiO3 using variational linear-response theory
[11]. The agreement with the empirical approach of Axe
[2] is also surprisingly good, suggesting that his modeling
was reasonable. The calculations were performed in the
theoretical cubic structures. In two cases, we also did
the calculations for experimental tetragonal structures,
showing that the Z* are quite insensitive to structural
details.

As shown in Table I, the anomalously large Z*(B) and
Z3(O) reported previously for KNbOj3 [10] and BaTiO3
[11] are generic to all the perovskites studied here. How-
ever, with the exception of the Pb compounds, Z*(A) and
Z5(0) are close to their nominal ionic valence (+1 for Na
and K, +2 for Ca, Sr, and Ba, and —~2 for O). We find a

TABLE I. Born effective charges for ABO3 perovskites.
Z37(0) and Z3(O) refer to O displacements 1 and 2 of Fig. 1.

Z*(Ay Z7(B) Zi(O) Z;(0O) Structure
BaTiO3 2.75 7.16 -5.60 —2.11 Cubic

2.70 7.10 -5.56 —2.12 Cubic?

2.9 6.7 -48 -24  Cubic®
SrTiO;  2.54 7.12 —-5.66 —2.00 Cubic

2.4 7.0 -58 -18  Cubic®
CaTiO; 2.58 7.08 -5.65 —2.00 Cubic
KNbO3 1.14 9.23 —-7.01 -1.68 Cubic

1.14 9.36 —-7.10 —1.70 Tetragonal

0.82 9.13 —6.58 —1.68 Tetragonal®
NaNbO; 1.13 9.11 —-7.01 —-1.61 Cubic
PbTiOs 3.90 7.06 ~5.83 —2.56 Cubic

3.92 6.71 —-551 —2.56 Tetragonal
PbZrO3z 3.92 5.85 —4.81 248 Cubic
BaZrOz 2.73 6.03 —4.74 —-2.01 Cubic

2Reference [11], using density functional perturbation theory.
bReference [2], empirical approach.
°Reference [10], using finite differences of polarization.

strong correlation between the effective charge and chem-
ical species of the metal atoms, i.e., Z*(B) is independent
of A and vice versa. For example, Z*(Ti) are 7.16, 7.12,
7.08, and 7.06, in compounds BaTiOg, SrTiO3, CaTiO3,
and PbTiO3, respectively. Another observation is the
strong correlation between Z*(B) and Z}(O), as well as
between Z*(A) and Z3(O). This is obviously associated
with the fact that displacement O; modulates the O-B
bond, while O modulates the O-A bond.

The anomalously large values of Z*(B) and Z3}(O) in-
dicate that a strong dynamic charge transfer takes place
along the O-B bond as the bond length is varied. This
can be understood as arising from the weakly ionic char-
acter of the bond as follows. At rest, the bonding orbital
has most of its character on the O 2p orbital; but as
it is compressed and the hopping integral increases, the
bond becomes more covalent, and the admixture of B d
character increases, corresponding to an electron trans-
fer from O to B [16]. It is easily seen that this effect
will be strongest for bonds which are on the borderline
between ionic and covalent behavior. Thus, we suspect
that such anomalous Z* values will be generic to weakly
ionic oxides.

The effective charges can be used to predict the spon-
taneous polarization P, for ferroelectric or antiferroelec-
tric materials, given the ground state structure. As a
test, we calculate P, for some structures and compare
with experiment. All the structural information is ob-
tained from Landolt-Bornstein [17]. For BaTiOgz, the
calculated P, are 0.30, 0.26, and 0.44 C/m? for tetrago-
nal, orthorhombic, and rhombohedral phases, compared
with experimental values of 0.27, 0.30, and 0.33 C/m?,
respectively [18]. The agreement is very good, except for
the rhombohedral phase, where the complicated twinning
effect in the sample may have caused the too small ob-
served P, [18]. For KNbQj in the tetragonal phase, the
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calculated P, = 0.40 C/m? is in good agreement with
the experimental result of 0.40 C/m?%. We calculated P,
for PbTiO3 in the tetragonal structures for two different
temperatures; the resulting values are 1.04 C/m? at 295
K, and 0.74 C/m? at 700 K, to be compared with exper-
imental values of 0.75 and 0.50 C/m?2, respectively [19)].
We suspect these discrepancies may be related in part to
cracking and charge leakage problems in the experiment
17].

The Born effective charge tensor reflects the effect of
Coulomb interactions and is directly related to the LO-
TO splitting. The dynamical matrix can be shown to
take the form [20]

_ p© dre’ (Z, @)u(Z3 @)
R A T T
where q is the wave vector, €,(q) is the optical macro-
scopic dielectric function, and D(® is an analytic function
of q. The difference between the LO and TO frequencies
for an ionic crystal arises from the last term in Eq. (2},
which accounts for the effect of the macroscopic electric
field which is only present for the LO modes.

We are specifically interested in the LO-TO splitting
at @ = 0. The dynamical matrix D(®(q = 0) has been
previously calculated in investigating the soft phonon
modes [8]. We take experimental values for €,,(0). The
observed values in the visible light range [17] are ex-
trapolated to the optical w = 0 limit using the disper-
sion relation € — 1 = C/(w? — w?), where C and wy
are constants. The resulting values of €5 (0) are 5.24
(BaTiO;;), 5.18 (SI‘TiO3), 5.81 (CaTiO;;), 4.69 (KNbOg),
4.96 (NaNbO3), and 8.64 (PbTiO3). The fact that these
experimental values are obtained for the cubic phase at
high temperature, or for a lower-symmetry phase, in-
troduces some uncertainty into the calculated LO mode
frequencies. We could not find corresponding data for
PbZrO3 and BaZrOs.

Dmn
mn(Q)

For the perfect cubic perovskite structure at q = 0,
there are 15 phonon modes: 3 acoustic modes, 4 LO
modes, and 4 doubly degenerate TO modes. One pair
of TO and LO modes are not split by the Coulomb inter-
action; not being infrared (IR) active, we do not consider
them further. The calculated IR-active TO and LO mode
frequencies are shown in Table II, together with experi-
mental observed values. The experimental values quoted
are either for the F1, modes in the cubic structure, or the
corresponding E modes in the tetragonal structure. The
agreement with experimental values is typically within
5%-10%, which is very good for an ab initio calculation.
The less satisfying agreement for PbTiO3 and PbZrOg is
partly due to the big difference between the experimental
tetragonal phase and the theoretical cubic phase.

The eigenvector analysis shows that generally there
is no correspondence between individual TO and LO
phonon modes. For convenience we consider only modes
of a given Cartesian polarization, say along z, for the re-
mainder of this paper. The dynamical matrices for LO
and TO modes at q = 0 are then related by

dre® 7377 .
Q €x(0)

The correlation between the LO and TO modes can
be measured by the matrix ¢;; = ((1°|M |§}O), where
My = Mpybmrn is the mass matrix and &; are the IR-
active mode eigenvectors. The c;; matrix for KNbOj is
typical:

D2 = D2 +

0.19 0.63 0.75
0.98 0.14 0.13 | , (4)
0.03 0.76 0.65

where rows label TO modes and columns label LO modes.
Note that ¢13 is the largest element in the first row, which
means that the softest TO mode (TO1) is most closely
assoctated with the hardest LO mode (LO3).

C =

TABLE II. Calculated IR-active optical phonon frequencies (cm™!) in comparison with exper-
imental values. Measured E modes of tetragonal structures are listed for BaTiO3z, PbTiO3, and
PbZrO;. Imaginary frequencies indicate soft modes.

TO1 TO2 TO3 LO1 LO2 LO3

Theor. Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor. Expt.
BaTiOsz 178 177 181> 468 487 173 180° 453 468> 738 717°
SrTiOs  41i 165 175 546 545° 158 171° 454 474> 829 795
CaTiOsz  153; 188 610 133 427 866
KNbOs  143i 188 198° 506 521° 183 100° 407 418 899  826°
NaNbO; 152: 115 556 5359 101 379 4119 928 8769
PbTiOs  144i 121  210° 497 500° 104 410 673  750°
PbZrO;  131i 63 221F 568 508f
BaZrOz 95  115f 193 210f 514 505f

*T. Nakamura, Ferroelectrics 137, 65 (1992).

®J.L. Servoin, Y. Luspin, and F. Gervais, Phys. Rev. B 22, 5501 (1980).

°M.D. Fontana, G. Métrat, J.L. Servoin, and F. Gervais, J. Phys. C 17, 483 (1984).

dF. Gervais, J.L. Servoin, J.F. Baumard, and F. Denoyer, Solid State Commun. 41, 345 (1982).

°Reference [17].

{C.H. Perry, D.J. McCarthy, and G. Ruprecht, Phys. Rev. 138, A1537 (1965).
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TABLE III. The effective charges associated with IR-active
TO modes. Last column: critical depolarization factor.

Z(TO1) Z(TO02) Z(TO3) Lc

BaTiO; 8.95 1.69 1.37 0.062
SrTiO; 7.37 3.22 3.43 0.003
CaTiO; 6.25 4.94 4.50 0.112
KNbO3 8.58 1.70 4.15 0.040
NaNbO3 6.95 2.32 5.21 0.071
PbTiO3 7.58 4.23 3.21 0.083
PbZrO; 4.83 4.86 4.30

BaZrOs; 4.01 5.57 3.84

This remarkable behavior is also clearly evident in the
values of the mode effective charges, defined as Z] =

Yom M;/ZZ;;&;F"?. If the last term of Eq. (3) did not cause
any mixing of the mode eigenvectors, this value would
directly reflect the LO-TO splitting. Table III lists the
calculated mode effective charges for all 8 compounds.
We find that Z* for the soft mode is usually the largest,
which means that the soft mode will couple most strongly
with the E field. In fact, we find that if we construct an
LO mode with an eigenvector identical to that of the
soft TO mode {TO1), its frequency would generally lie
between those of the LO2 and LO3 modes. The extreme
case is BaTiOg, for which the LO frequency associated
with TO1 is 708 cm™!, only 3% smaller than that of
LO3. This giant LO-TO splitting reflects the importance
of the Coulomb interaction. Most compounds have a
large Z* for more than one mode. These modes will be
strongly mixed by the Coulomb interaction in going to
the LO case. Since the LO and TO modes have quite
different eigenvectors, any model that assumes a one-to-
one correspondence between LO and TO modes would
be highly unjustified for perovskite compounds.

The role of Coulomb interaction depends on the E field
inside the material. With no external field, E = —4nLP,
where L is the depolarization factor which depends on the
geometry of the material (L = 1/3 for a sphere, L = 0
for a needle, and L = 1 perpendicular to a thin film).
We calculate the critical depolarization factor L., above
which the ferroelectric state becomes unstable. It is the
value which makes the matrix

dme? 2370 5

Q ex(0) )
have a second zero eigenvalue, besides that for transla-
tion. The calculated L.’s, listed in Table III, are found to
be remarkably small. Thus, it is clear that electric-field
effects will be critical and that the boundary conditions
and/or domain structures will play a very important role
in the occurrence of ferroelectricity. In other words, the
ferroelectric state can only develop when the depolariza-
tion field is close to zero.

In conclusion, we calculate the effective charge ten-

DFO(0) + Le

sors Z* for cubic perovskite materials ABOj3 using ultra-
soft pseudopotentials and a preconditioned conjugate-
gradient method. We find, for all the compounds stud-
ied, that Z*(B) and Z*(O) are anomalously large. The
LO and TO phonon frequencies are calculated and found
to be in good agreement with experimental observations.
The giant LO-TO splittings which emerge from the calcu-
lation indicate the importance of Coulomb interactions,
resulting in a remarkably small critical depolarization
field and a great sensitivity of the ferroelectricity to the
domain structure and boundary conditions.
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Phase Transitions in BaTiO 3 from First Principles
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We develop a first-principles scheme to study ferroelectric phase transitions for perovskite
compounds. We obtain an effective Hamiltonian which is fully specified by first-principles ultrasoft
pseudopotential calculations. This approach is applied to BaTiOj, and the resulting Hamiltonian is
studied using Monte Carlo simulations. The calculated phase sequence, transition temperatures, latent
heats, and spontaneous polarizations are all in good agreement with experiment. The order-disorder
versus displacive character of the transitions and the roles played by different interactions are discussed.

PACS numbers: 77.80.Bh, 61.50.Lt, 64.60.Cn. 64.70.—p

Because of their simple crystal structure, the cubic
ferroelectric perovskites present a special opportunity for
the development of a detailed theoretical understanding
of the ferroelectric phase transition. However, even in
BaTiO 3, a much-studied prototypical example of this class
of compounds {1], many aspects of the phase behavior are
far from simple. BaTiO; undergoes a succession of phase
transitions, from the high-temperature high-symmetry
cubic perovskite phase (Fig. 1) to slightly distorted fer-
roelectric structures with tetragonal, orthorhombic, and
rhombohedral symmetry. There is increasing evidence
that the cubic-tetragonal transition, at first thought to
be of the simple displacive kind, may instead be better
described as of the order-disorder type.

A comparison with the related cubic perovskites indi-
cates that this and other aspects of the phase transforma-
tion behavior in BaTiO; are not universal, but rather must
depend on details of the chemistry and structural energet-
ics of the particular compound. Therefore, it is of the first

«\ «%3

FIG. 1. The structure of cubic perovskite compounds BaTiO .
Atoms Ba, Ti, and O are represented by shaded, solid, and
empty circles, respectively. The areas of the vectors indicate
the magnitudes of the displacements for a local mode polarized
along %.
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importance to develop a microscopic theory of the relevant
materials properties. The value of a microscopic approach
has long been appreciated, but its realization was hindered
by the difficulty of determining microscopic parameters
for individual compounds. The forms of phenomenolog-
ical model Hamiltonians [1-4] were limited by the avail-
able experimental data, leading to oversimplification and
ambiguities in interpretation. For the perovskite oxides,
empirical [5] and nonempirical pair potential methods [6]
did not offer the high accuracy needed for the construction
of realistic models. Recently, high quality first-principles
calculations within the local density approximation (LDA)
have been shown to provide accurate total-energy surfaces
for perovskites [7—10]. While an ab initio molecular-
dynamics simulation of the structural phase transition is
not computationally feasible at present, the application of
these first-principles methods can clearly form a founda-
tion for the realistic study of the finite-temperature phase
transitions.

In this paper, we pursue a completely first-principles
approach to study the ferroelectric phase transitions in
BaTiO;. In particular, we (i) construct an effective Hamil-
tonian to describe the important degrees of freedom of the
system [11,12], (ii) determine all the parameters of this ef-
fective Hamiltonian from high-accuracy ab initio LDA cal-
culations {9,13,14], and (iii) carry out Monte Carlo (MC)
simulations to determine the phase transformation behavior
of the resulting system. We find the correct succession of
phases, with transition temperatures and spontaneous po-
larization in reasonable agreement with experiment. Strain
coupling is found to be crucial in producing the correct suc-
cession of low-symmetry phases. Finally, by analyzing the
local distortions and phonon softening, we find the cubic-
tetragonal transition in BaTiOj to be intermediate between
the displacive and order-disorder limits.

Briefly, the effective Hamiltonian is constructed as fol-
lows. Since the ferroelectric transition involves only small
structural distortions, we represent the energy surface
by a Taylor expansion around the high-symmetry cubic
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perovskite structure, including fourth-order anharmonic
terms. Because the contribution to the partition function
decays exponentially with increasing energy, we simplify
this expansion by including only low energy distortions.
Among all the possible phonon excitations, the long-
wavelength acoustic modes (strain) and lowest transverse-
optical phonon modes (soft modes) have the lowest energy.
It is therefore our approximation to include only these two
kinds of phonon excitations, thus reducing the number of
degrees of freedom per unit cell from 15 to 6. This approx-
imation could later be systematically improved, or entirely
removed, by including higher-energy phonons.

It is straightforward to describe the strain degrees of
freedom associated with the acoustic modes in terms of
displacement vectors v; associated with each unit cell /.
In a similar manner, we introduce variables u; to describe
the amplitude of a “local mode” associated with cell /.
The properly chosen local mode should reproduce the soft-
mode phonon dispersion relation throughout the Brillouin
zone, preserve the symmetry of the crystal, and minimize
interactions between adjacent local modes. The local
mode chosen for BaTiOj; is shown in Fig. 1. The terms in
our Taylor expansion of the energy in the variables {u} and
{v} are organized as follows: (i) a soft-mode self-energy
E*"({u}) containing intrasite interactions to quartic an-
harmonic order; (ii) a long-range dipole-dipole coupling
EY!({u}) and a short-range (up to third neighbor) correc-
tion E5°"({u}) to the intersite coupling, both at harmonic
order; (iii) a harmonic elastic energy E¢'“({v}); and (iv)
an anharmonic strain—soft-mode coupling E™({u},{v})
containing Gruneisen-type interactions (i.e., linear in
strain and quadratic in soft-mode variables). The cubic
symmetry greatly reduces the number of expansion
coefficients needed. All the expansion parameters are
determined from highly accurate first-principles LDA
calculations applied to supercells containing up to four
primitive cells (20 atoms). The calculation of the needed
microscopic parameters within LDA for BaTiO; has been
made possible by the use of Vanderbilt ultrasoft pseu-
dopotentials [13], which make large-scale calculations
tractable at the high level of accuracy needed, and by the
recent theory of polarization of King-Smith and Vanderbilt
[15], which provides a convenient method of calculating
the dipolar interaction strengths [14]. The details of
the Hamiltonian, the first-principles calculations, and
the values of the expansion parameters will be reported
elsewhere [16].

We solve the Hamiltonian using Metropolis Monte
Carlo simulations [17,18] on an L X L X L cubic lattice
with periodic boundary conditions. Since most energy
contributions (except E9') are local, we choose the single-
flip algorithm and define one Monte Carlo sweep (MCS)
as L* flip attempts.

The ferroelectric phase transition is very sensitive to
hydrostatic pressure, or, equivalently, to lattice constant.
The LDA-calculated lattice constants are typically 1% too
small, and even this small error can lead to large errors
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in the zero-pressure transition temperatures. The effect
of this systematic error can largely be compensated by
exerting a negative pressure that expands the lattice con-
stant to the experimental value. For BaTiO3, we choose
P = —4.8 GPa which gives the best overall agreement for
the computed volumes for the four phases with their ex-
perimental values. The following simulations and analy-
sis are for this pressure.

In our simulation, we concentrate on identifying the
succession of different phases, determining the phase
transition temperatures, and extracting qualitative features
of the transitions. We also focus on identifying the
features of the Hamiltonian which most strongly affect
the transition properties. For these purposes, it is most
convenient to monitor directly the behavior of the order
parameter. In the case of the ferroelectric phase transition,
this is just the polarization vector (or, equivalently,
the soft-mode amplitude vector u) averaged over the
simulation cell. To avoid effects of possible rotation of
the polarization vector and to identify the different phases
clearly, we choose to accumulate the absolute values
of the largest, middle, and smallest components of the
averaged local-mode vector for each step, denoted by
ui, uy, and us, respectively (u; > up > u3). The cubic
(C), tetragonal (T), orthorhombic (0), and rhombohedral
(R) phases are then characterized by zero, one, two, and
three nonzero order-parameter components, respectively.
As a reference, the average local-mode amplitude u =
> lu;|/N is also monitored. Here, u; is the local mode
vector at site i and N is the total number of sites.

Figure 2 shows the quantities u;, uz, u3, and u as
functions of temperature in a typical simulation for an
L = 12 lattice. For clarity, we show only the cooling
down process. The values are averaged over 7000 MCS’s
after the system reaches equilibrium, so that the typical
fluctuation of order parameter components is less than
10%. We find that u,, u,, and us are all very close to zero
at high temperature. As the system cools down past 295 K,
u) increases and becomes significantly larger than u; or us.
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FIG. 2. The averaged largest, middle, and smallest compo-
nents u;, u, u; and amplitude u of local modes as a function
of temperature in a cooling-down simulation of a 12 X 12 X 12
lattice. The dotted lines are guides to the eyes.
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This indicates the transition to the tetragonal phase. The
homogeneous-strain variables confirm that the shape of
the simulation cell becomes tetragonal. Two other phase
transitions occur as the temperature is reduced further. The
T-O transition occurs at 230 K (sudden increase of u,) and
the O-R transition occurs at 190 K (sudden increase of u3).
The shape of the simulation cell also shows the expected
changes. The sequence of transitions exhibited by the
simulation is the same as that observed experimentally.

The transition temperatures are located by careful
cooling and heating sequences. We start our simulation
at a high temperature and equilibrate in the cubic phase.
The temperature is then reduced in small steps. At each
temperature, the system is allowed to relax for 10000
MCS’s (increased to 25000 and then to 40000 MCS’s
close to the transition). After each transition is complete,
the system is reheated slowly to detect any possible
hysteresis. The calculated transition temperatures are
shown in Table 1. Simulations for three lattice sizes are
performed; the error estimates in the table reflect the
hysteretic difference between cooling and heating, which
persists even after significant increase of the simulation
time. The calculated transition temperatures are well
converged with respect to system size, and are in good
agreement with experiment. The saturated spontaneous
polarization P in different phases can be calculated from
the average local-mode variable. The results are also
shown in Table 1. We find almost no finite-size effect,
and the agreement with experiment is very good for the
O and T phases. The disagreement for the R phase may
be due in part to twinning effects in the experimental
sample [19].

One way to determine the order of the transition is to
calculate the latent heat. An accurate determination of
the latent heat would require considerable effort; here, we
only try to provide good estimates. We approach the tran-
sition from both high-temperature and low-temperature
sides until the point is reached where both phases appear
equally stable. The difference of the average total energy
is then the latent heat [20]. This estimate should be good
as long as some hysteresis is present. The calculated la-
tent heat (Table I) is in rough agreement with the rather
scattered experimental data. We find that, taking into ac-
count finite-size effects, the latent heats for all three tran-
sitions are significantly nonzero, suggesting all transitions
are first order. For the T-O and O-R transitions, this is
consistent with Landau theory, which requires a transition
to be first order when the subgroup relation does not hold
between the symmetry groups below and above T..

Next, we investigate the extent to which the cubic-
tetragonal transition can be characterized as order disor-
der or displacive. In real space, these possibilities can
be distinguished by inspecting the distribution of the
local-mode vector u; in the cubic phase just above the
transition. A displacive (microscopically nonpolar) or
order-disorder (microscopically polar) transition should
be characterized by a single-peak or double-peak struc-

TABLE 1. Calculated transition temperatures T, saturated
spontaneous polarization P,, and estimated latent heat [, as a
function of simulation cell size.

Phase L=10 L=14 Expt.?
T.(K) o-T 197 £ 3 200 = 5 183
T-0 230 = 10 230 = 10 278
C-T ~ 290 297 £ 1 403
P, (C/m?) R 043 0.43 0.33
0 0.35 0.35 0.36
T 0.28 0.28 0.27
! (J / mol) O-R 50 60 33-60
T-0 90 100 65-92
C-T - 150 196-209

4T, Mitsui et al., Landolt-Bornstein Numerical Data and Func-
tional Relationships in Science and Technology (Springer-
Verlag, 1981), NS, 111/16.

ture, respectively. The distribution of u, at T = 320 K is
shown in Fig. 3. It exhibits a rather weak tendency to a
double-peaked structure, indicating a transition which has
some degree of order-disorder character. We also see in-
dications of this in the u-T relation in Fig. 2; even in the
cubic phase, the magnitude of the local-mode vector u is
significantly nonzero and close to that of the rhombohe-
dral phase. Although the components of the local modes
change dramatically during the phase transition, u only
changes slightly.

In reciprocal space, a system close to a displacive
transition should show large and strongly temperature-
dependent fluctuations of certain phonons (soft modes)
confined to a small portion of the Brillouin zone (BZ).
For an extreme order-disorder transition, on the other
hand, one expects the fluctuations to be distributed over
the whole BZ. For BaTiO;, we calculated the average
Fourier modulus of the soft T-O mode {|u(g)|?) at several
temperatures just above the C-T transition. A strong
increase of (|u(q)|?) as T — T. would indicate phonon
softening. As expected, we do observe this behavior for
modes at I'. While these modes become *“hard” rather
quickly along most directions away from I', they remain

Density of States

u, (a.u.)

FIG. 3. The distribution of a Cartesian component of the local
mode variable in the cubic phase at T = 320 K.
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soft at least halfway to the BZ boundaries along the {100}
directions, again indicating some order-disorder character.

Our theoretical approach allows us to investigate the
roles played by different types of interaction in the phase
transition. First, we study the effect of strain. The strain
degrees of freedom were separated into local and homo-
geneous parts, representing finite- and infinite-wavelength
acoustic modes, respectively. Both parts were included in
the simulations. If we eliminate the local strain (while still
allowing homogeneous strain), we find almost no change
in the transition temperatures. This indicates that the ef-
fect of the short-wavelength acoustic modes may not be
important for the ferroelectric phase transition. If the ho-
mogeneous strain is frozen, however, we find a direct
cubic-rhombohedral phase transition, instead of the cor-
rect series of three transitions. This demonstrates the im-
portant role of homogeneous strain. Second, we studied
the significance of the long-range Coulomb interaction
in the simulation. To do this, we changed the effective
charge of the local mode (and thus the dipole-dipole in-
teraction), while modifying other parameters so that the
frequencies of the zone-center and zone-boundary phonons
remain in agreement with the LDA values. We found only
a slight change (10%) of the transition temperatures when
the dipole-dipole interaction strength doubled, but elimi-
nation of dipole-dipole interaction results in a dramatic
change (in fact the ground state becomes a complex antifer-
roelectric structure). This result shows that it is essential
to include the long-range interaction, although small inac-
curacies in the calculated values of the effective charges
or dielectric constants may not be very critical. On the
other hand, our tests do indicate a strong sensitivity of
the 7,.’s to any deviation of the fitted zone-center or zone-
boundary phonon frequencies away from the LDA results.
Thus, highly accurate LDA calculations do appear to be a
prerequisite for an accurate determination of the transition
temperatures.

Our approach opens several avenues for future study.
Allowing a higher-order expansion of the energy surface
might allow an accurate determination of the phase dia-
gram. More extensive Monte Carlo simulations on larger
systems, and with careful analysis of finite-size scaling,
could provide more precise transition temperatures, free
energies, and latent heats [21]. Finally, the theory would
be more satisfying if the 1% underestimate of the lat-
tice constant in the LDA calculation could be reduced or
eliminated.

In conclusion, we have obtained the transition se-
quence, transition temperatures, and spontaneous polariza-
tions of BaTiO; and found them to be in good agreement
with experiment. We find that long-wavelength acous-
tic modes and long-range dipolar interactions both play
an important role in the phase transition, while short-
wavelength acoustic modes are not as relevant. The C-T

1864

phase transition is not found to be well described as a sim-
ple displacive transition.
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We carry out a completely first-principles study of the ferroelectric phase transitions in BaTiO3.
Our approach takes advantage of two features of these transitions: the structural changes are small,
and only low-energy distortions are important. Based on these observations, we make systematically
improvable approximations which enable the parametrization of the complicated energy surface. The
parameters are determined from first-principles total-energy calculations using ultrasoft pseudopo-
tentials and a preconditioned conjugate-gradient scheme. The resulting effective Hamiltonian is
then solved by Monte Carlo simulation. The calculated phase sequence, transition temperatures,
latent heats, and spontaneous polarizations are all in good agreement with experiment. We find the
transitions to be intermediate between order-disorder and displacive character. We find all three
phase transitions to be of first order. The roles of different interactions are discussed.

I. INTRODUCTION

Because of their simple crystal structure, the per-
ovskite oxides present a special opportunity for the de-
velopment of a detailed theoretical understanding of the
ferroelectric phase transition. Within this family of ma-
terials, one finds transitions to a wide variety of low-
symmetry phases, including ferroelectric and antiferro-
electric transitions. Both first- and second-order tran-
sitions are observed, with a full spectrum of transition
behavior ranging from displacive to order-disorder behav-
ior. The properties of BaTiO3, a much-studied prototyp-
ical example of this class of compounds,’ exemplify this
rich behavior. BaTiOj; undergoes a succession of first-
order phase transitions, from the high-temperature high-
symmetry cubic perovskite phase to slightly distorted fer-
roelectric structures with tetragonal, orthorhombic, and
rhombohedral symmetry. There is increasing evidence
that the cubic-to-tetragonal transition, at first thought
to be of the simple displacive kind, may instead be bet-
ter described as of the order-disorder type. '

The variety exhibited by the perovskite oxides shows
that the phase transformation behavior depends on de-
tails of the chemistry and structural energetics of each
particular compound. Therefore, it is of the first impor-
tance to develop a microscopic theory of the materials
properties which determine the ordering of the phases,
the character and thermodynamic order of the transi-
tions, and the transition temperatures. The value of a
microscopic approach has long been appreciated, but its
realization was hindered by the difficulty of determin-
ing microscopic parameters for individual compounds.
The forms of phenomenological model Hamiltonians!
were limited by the available experimental data, leading
to oversimplification and ambiguities in interpretation.

0163-1829/95/52(9)/6301(12)/$06.00 52

For the perovskite oxides, empirical® and nonempirical
pair potential methods® did not offer the high accuracy
needed for the construction of realistic models.
First-principles density-functional calculations offer an
attractive approach for enhancing our microscopic under-
standing of perovskites and other ferroelectrics. The all-
electron full-potential linearized-augmented-plane-wave
(FLAPW) method has been used by several groups to
study ferroelectricity in perovskites within the local den-
sity approximation (LDA)."® Recently, King-Smith and
Vanderbilt performed a systematic study of structural
and dynamical properties and energy surfaces for eight
common perovskites,>!? using the first-principles ultra-
soft pseudopotential method and the LDA. These cal-
culations demonstrate that ferroelectricity in the per-
ovskites reflects a delicate balance between long-range
electrostatic forces which favor the ferroelectric state
and short-range repulsions which favor the cubic phase.
While constrained to calculations of zero-temperature
properties, these calculations yield correct predictions
of ground state structures and the occurrence of ferro-
electric phases for certain materials. They show that
high-quality LDA calculations can provide considerable
insight into the nature of the total-energy surface in the
perovskites. For further insight into the energetics of
ferroelectric compounds, the polarization generated by
various distortions can be studied directly, using a recent
first-principles method by King-Smith and Vanderbilt.!?
This approach has been applied to the investigation of the
zone-center phonons in the common perovskite oxides.!?
The application of these first-principles methods can
clearly form a foundation for the realistic study of the
finite-temperature phase transitions. While an ab initio
molecular-dynamics simulation of the structural phase
transition is not computationally feasible at present, we
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pursue an alternative first-principles approach to study
ferroelectric phase transitions and demonstrate its appli-
cation to BaTiO3. In particular, we (i) construct an ef-
fective Hamiltonian to describe the important degrees of
freedom of the system,'!* (ii) determine all the param-
eters of this effective Hamiltonian from high-accuracy ab
initio LDA calculations,®!21% and (iii) carry out Monte
Carlo (MC) simulations to determine the phase transfor-
mation behavior of the resulting system. An abbreviated
presentation of this work has already appeared in Ref.
16.

The remainder of this paper is organized as follows.
In Sec. II, we go through the detailed procedure for the
construction of the effective Hamiltonian and give the ex-
plicit formula. In Sec. III, we describe our first-principles
calculations and the determination of the expansion pa-
rameters in the Hamiltonian. The technical details of the
Monte Carlo simulation are presented in Sec. IV. In Sec.
V, we report our calculated transition temperatures, or-
der parameters, and phase diagram, as well as thermody-
namic order and nature of the phase transitions. The role
of different interactions in determining the phase transi-
tion behavior is also discussed. Section VI concludes the

paper.

II. CONSTRUCTION OF THE HAMILTONIAN
A. Approximations and local modes

The central quantity for studying the equilibrium prop-
erties of a system at finite temperature is its partition
function. This can be determined from the energy sur-
face, i.e., the total potential energy as a functional of
the atomic coordinates. Since the contribution to the
partition function decreases exponentially with increas-
ing energy, it is possible to obtain an accurate partition
function for low-temperature applications from a simpli-
fied energy surface including only low-energy configura-
tions. Our goal is to construct a parametrized Hamil-
tonian which (i) is ab initio, involving no empirical or
semiempirical input; (ii) results in an accurate partition
function for the temperature range of interest; (iii) is fully
specified by a few ab initio total-energy calculations; and
(iv) involves only approximations that are systematically
improvable and removable.

Our first fundamental approximation is to use an en-
ergy surface represented by a low-order Taylor expansion.
Both experiments and first-principles total-energy calcu-
lations suggest that the ferroelectric (FE) phase transi-
tion involves only very small atomic displacements and
strain deformations from the equilibrium cubic structure.
It is reasonable to assume that all the atomic config-
urations with significant contributions to the partition
function would be close to this cubic structure in the
temperature range of interest. Thus, it is natural to rep-
resent the energy surface by a Taylor series in the dis-
placements from the cubic structure. We include up to
fourth-order terms in our expansion; this is clearly a min-
imum, since ferroelectricity is intrinsically an anharmonic
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phenomenon. By including higher-order terms, this ap-
proximation could later be systematically improved.

It is convenient to describe the small distortions
from the cubic structure in terms of the 3 acoustic
and 12 optical normal-mode coordinates per k point.
While this could be regarded as only a change of ba-
sis, it motivates our second fundamental approximation,
which is to restrict the expansion to include only low-
energy distortions. To achieve this separation, we note
that both experimentally measured and LDA-calculated
phonon dispersion relations!''? show that only the low-
est TO modes (soft modes) and long-wavelength acoustic
phonons (strain variables) make significant contributions
to the phonon density of states at low energy. Experi-
mental studies also suggest that the FE phase transitions
are accompanied by a softening of the lowest TO mode
and the appearance of a strain. All other phonons are
hardly affected by the transitions. It is then our second
approximation to express the energy surface only as a
function of the soft-mode amplitudes and strain. This
approximation reduces the number of degrees of freedom
per cell from 15 to 6, and greatly reduces the number of
interaction parameters needed. If necessary, this approx-
imation could later be relaxed by including additional
modes.

It is convenient to describe the soft mode over the
whole Brillouin zone (BZ) in terms of a collective mo-
tion of “local modes,” just as one describes an acoustic
phonon in terms of a collective displacement of individual
atoms. However, there is more than one choice of local
mode which will generate the same soft mode throughout
the BZ; an intelligent choice can simplify the Hamiltonian
and reduce the number of calculations needed.!” First,
the local mode should be as symmetric as possible, so as
to minimize the number of expansion parameters needed.
Second, the interactions between local modes at different
sites are more difficult to treat than their on-site energy,
and so the local mode should be chosen so as to minimize
intersite interactions. For perovskite ABO3; compounds,
the highest symmetry is achieved by centering the local
mode on either atom A or B. In the case of BaTiOg3, the
Ti-O bond is much stronger than the Ba-O bond and the
motion of the Ti is more important in the FE transition;
so we choose the local mode which is centered on the Ti
atom.

The soft zone-center (k=0) FE mode in BaTiOj is a
I'15 mode which can be characterized by the four param-
eters {4, {B, {oj, and {o (for a mode polarized along
the jth Cartesian direction, these refer to the displace-
ments of the A atom, the B atom, the O atom that form
a B-O bond along direction j and the other two O atoms,
respectively). We take the corresponding local mode to
consist of a motion of the central A atom by amount &4,
the eight neighboring B atoms by amounts £5/8, and the
six neighboring O atoms by amounts £o/2 or €01/2,
along the jth Cartesian direction. This mode is illus-
trated in Fig. 1 of Ref. 16; its amplitude is denoted u;.
An arbitrary £ = 0 soft mode can then be realized as a
linear superposition of these local modes having identical
amplitudes (u,,uy,u;) = u in every cell.

The harmonic interactions between the local-mode am-
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plitudes u; connecting neighboring cells ¢ must be cho-
sen to reproduce the harmonic behavior of the soft-mode
branch throughout the BZ. Long-range Coulomb forces
are known to play an important part in these interac-
tions; they are characterized in terms of the calculated
Born (or “transverse”) effective charges.!? Thus, the har-
monic intersite interactions are represented by a sum of
two contributions: an infinite-range piece that is precisely
the interaction of point dipoles whose magnitude is given
by the Born effective charge and corrections which we
take to be of covalent origin and therefore local.

To be completely general, anharmonic intercell interac-
tions between neighboring u; would likewise have to be
included. Instead, we include only on-site anharmonic
interactions, which are chosen in such a way that the an-
harmonic couplings for ¥ = 0 modes of the real system
are correctly reproduced. This “local anharmonicity ap-
proximation” is an important feature which helps make
our scheme tractable and efficient. To go beyond this
approximation, one could carry out a careful series of
frozen-phonon LDA calculations on supercells to deter-
mine anharmonic couplings at other points in the BZ.
However, past experience has shown that calculations of
this kind are very cumbersome because of the large num-
ber of parameters which has to be determined.®

With these approximations, our Hamiltonian consists
of five parts: a local-mode self-energy, a long-range
dipole-dipole interaction, a short-range interaction be-
tween soft modes, an elastic energy, and an interaction
between the local modes and local strain. Symbolically,

Etot — Eself({u}) + Edpli({u}) + Eshort({u})
+E* ({m}) + B™ ({u}, {m}) , (1)

where u is the local soft-mode amplitude vector and 7 is
the six-component local strain tensor in Voigt notation
(m = e11, na = 2e33). In the following subsections, we
present the explicit formulas for these five contributions.

B. Local mode self energy

The first term is
Eself {u}

ZE w), (2)

where E(u;) is the energy of an isolated local mode at cell
R; with amplitude u;, relative to that of the perfect cubic
structure. To describe the FE phase, F(u;) must contain

Edpl

anharmonic as well as harmonic contributions. Since the
reference structure is cubic, only even-order terms can
enter; we choose to truncate at fourth order. Symmetry
considerations then require that it take the form

E(u‘i) - Iizu + au + ’Y(uzzuzy + ulyuzz + uzzufm) ) (3)

where u; = |u;| and K2, @, and -y are expansion parame-
ters to be determined from first-principles calculations.

C. Dipole-dipole interaction

The second term in the effective Hamiltonian repre-
sents long-range interactions between local modes. Only
dipole-dipole interactions are considered, since higher-
order terms tend to be of short range and their effect will
be included in the short-range contribution E*P°™*({u}).
The dipole moment associated with the local mode in cell
1 is d; = Z*u;. Here, Z* is the Born effective charge for
the soft mode, which can be obtained as

" =8aZ) +€8Zp + &0|Z5) + 260120, (4)

from the eigenvector of the soft mode, once the Born
effective charges for the ions are known.!? In atomic units
(energy in Hartree), we have

BV ({u}) =

z*? PPt 3(Ry; - ui) (Rij - uy)
R3. )
® i<y ij

(5)

Here, € is the optical dielectric constant of the material,
Rl] = |Rij|, Rij = R, — R]‘, and Rij = Rij/R,'j.

In practice, Eq. (5) is not directly useful for three-
dimensional systems with periodic boundary conditions;
instead, we use an Ewald construction to evaluate E9P!,
We effectively terminate the sum in such a way that
the k = 0 modes of the supercell will represent physi-
cal TO(T') modes. For a TO mode, the induced depo-
larization electric field is zero; from the point of view of
the dipole sum, it is as though the material were sur-
rounded by a layer of metal. In the Ewald construction,
this is equivalent to setting the surface terms to zero.!®
Under these conditions and choosing the decay A of the
Gaussian charge packets to be small enough so that the
real-space summation can be entirely neglected, we have

Adu?

<—IE\|2 ) D (G -u)(G - u;)cos(G - Ryj) — 2; 3\/7% ) (6)

G¢o ij

where €. is the cell volume and G is the reciprocal lattice vector.
Because of its long-range nature, the calculation of E9P! is the most time-consuming part of our Monte Carlo

simulations.

It is thus worth some special treatment to reduce the computational load. In principle, the term R;;

appearing in the denominator of Eq. (5) should be strain dependent. However, as we have chosen to expand the
intersite interactions between local modes only up to harmonic order, it is consistent to ignore this effect, since
strain-induced changes of the dipole-dipole interaction will enter only at higher order. This is equivalent to fixing the
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reciprocal lattice vectors G and all the atomic position vectors R;. The dipole energy can then be written as

Edp]
ij,a3

with

Qijap =
S G #0

Here, o and (3 denote Cartesian components. The matrix
Q is thus treated as a constant; it is calculated once and
for all, and stored for later calculation of the dipole en-
ergy. This strategy increases the computational efficiency
by at least one order of magnitude.

D. Short-range interaction

E*tort({u}) is the energy contribution due to the short-
range interactions between neighboring local modes,
with dipole-dipole interactions excluded. This contribu-
tion stems from differences of the short-range repulsion
and electronic hybridization between two adjacent local
modes and two isolated local modes. Together with the
dipole-dipole interaction, this interaction determines the
soft-mode energy away from the zone center. Expanded
up to second order, it can be written as

ZZJU aBliallis - (9)

z#z of

Eshort { }

The coupling matrix J;; og is a function of R;; and should
decay very fast with increasing |R;;|. Here, we consider
the short-range interaction up to third nearest neighbor
(NN), whose local mode shares atoms with the local mode
on the origin. Local modes between further neighbors
involve displacements of atoms at least two hops away
(in tight-binding language) and their core-core repulsion
or hybridization should be much less important than the
dipole-dipole interaction which is taken care of in E9IP!,

The interaction matrix J;j g can be greatly simplified
by symmetry. For a cubic lattice, we have

first NN Jijap= (j1 + (2 — 31) | Rij.al)0as ;
second NN :  J;; 6= (ja + \/—( j3 — j4)|Rij al)dap
+2j5 RijaRij (1 = bap) ;
third NN :  Jyj ap= jebag + 357Rij aRijs(1 — 6ag) »
(10)

where fZi]-,a is the a component of R;;/R;;. So we have
only seven interaction parameters for a cubic lattice. The
coefficients ji, jz, ..., j7 in the above equations have phys-
ical meanings that are sketched schematically in Fig. 1.
For example, j; represents the interaction strength of
“m”-like interactions between first neighbors.

27* Z G
|c:|2 a2

) cos(G - R;;)GaGg —

Z Qz]‘aﬁuz all; 3, (7)

/\3

m 5aﬂ 5:‘1‘ . (8)

E. Elastic energy

We will describe the state of elastic deformation of
the BaTiO3 crystal using local strain variables mi(R;),
where the Voigt convention is used (I = 1,...,6) and
R,; labels a cell center (Ti) site. In fact, the six vari-
ables per unit cell {n;(R;)} are not independent, but are
obtained from three independent displacement variables
per unit cell. In our analysis, these are taken as the di-
mensionless displacements v(R;) (in units of the lattice
constant a) defined at the unit cell corner (Ba) positions
R; + (a/2,a/2,a/2). In terms of these, the inhomoge-
neous strain variables 77 ;(R;) are defined in the next
subsection. Because of our use of a periodic supercell
in the Monte Carlo simulations, however, homogeneous
strain deformations are not included in the configuration
space {v(R;)}. Therefore, we introduce six additional
homogeneous strain components 7y, to allow the simu-
lation cell to vary in shape. The total elastic energy is
expanded to quadratic order as

B ({m}) = Ef*({n1}) + Ex™({naa}),  (11)

where the homogeneous strain energy is simply given by

N
Ef({nm}) = 5311(71%,1 + 77%1,2 + 77?1,3)
+ NBiz2(n1mm,2 + NH,2MH,3 + NH,3MH,1)
N
+ 5344(77;{,4 + 77%1,5 + 77%1,6)' (12)
I Iz ia Ia
Is is iy

FIG. 1. The independent intersite interactions correspond-
ing to the parameters ji1, j2 (first neighbor), js, j4, j5 (second
neighbor), and js and j7 (third neighbor).
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Here Bji, B2, and By, are the elastic constants ex-
pressed in energy unmits (B1; = @3Ciy, etc.), and N is
the number of primitive cells in the supercell.

Rather than use an expression like (12) for the inho-
mogeneous strain energy, we have found it preferable to
express this part directly in terms of the v(R;).2° This
approach keeps the acoustic phonon frequencies well be-
haved throughout the Brillouin zone. To satisfy require-
ments of invariance under translations and rotations of
the crystal as a whole, the energy is expanded in scalar
products of differences between the v(R;). The cubic
crystal symmetry leads to a great reduction of the inde-
pendent parameters in the expansion. The energies of the
long-wavelength strain deformations can be reproduced
by an expansion of the form

Ef = 3" {ifos (Re) — v (Ri %))’

+m2[ve(Ri) — va(Ri £ x)][vy (Ri) — vy (Ri £ y)]
+744[v= (Ri) — v (R £ y) + vy(R;)

—vy(R; £ %)) + cyclic permutations} ,  (13)

corresponding to bond stretching, bond correlation, and
bond bending, respectively. Here, x = aX, y = ay, z =
az, and = indicates multiple terms to be summed. The v
coefficients are related to the elastic constants by v1; =
B11/4, 712 = B12/8, and y44 = Baa/8.

F. Elastic-mode interaction

To describe the coupling between the elastic deforma-
tions and the local modes, we use the on-site interaction

; 1
E™({u},{m}) = 3 Z > Biapm(Ri)ua(Rs)ug(Rs) -
1 lag
(14)
As a result of cubic symmetry, there are only three inde-
pendent coupling constants Bj,g:
Biox = B2yy = B3.. ’
Blyy = Bi:z: = Bage = B3, = B3er = BSyy s
B4yz = B4zy - BSzz = B5zac = BGmy = BGyz .
The strain contains both homogeneous and inhomoge-
neous parts. m(R;) = g i(R;) + nri(R;). The latter
are expressed in terms of the local displacement vectors

v as follows. We first define the six average differential
displacements associated with site R; as

Avy, = Z

d=0,y,z,y+z

Avgy, = Z

d=0,y,s,y+=

[ve(R; —d — x) — v, (R; = d)] ,
[vy(Ri —d —x) —v,(R; —d)] ,

and their cyclic permutations, recalling that v(R;) is
associated with position R; + (a/2,a/2,a/2). Then
nI,l(Ri) = Avgz /4, nra(Ri) = (Avy, + szy)/4, etc.
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III. FIRST-PRINCIPLES CALCULATIONS

We have shown that, with the two approximations we
made, the total-energy functional of the perovskite sys-
tem is fully specified by a set of parameters. These pa-
rameters can be obtained from first-principles calcula-
tions. We use density-functional theory within the lo-
cal density approximation (LDA). The technical details
and convergence tests of the calculations can be found in
Refs. 9, 10. The most important feature of the calcula-
tions is the Vanderbilt ultrasoft pseudopotential,’® which
allows a low-energy cutoff to be used for first-row ele-
ments. This makes high-accuracy large-scale calculations
of materials involving oxygen and 3d transition metal el-
ements affordable. The ultrasoft pseudopotential also al-
lows for exceptionally transferable pseudopotentials. It
ensures that all-electron atom and pseudoatom scatter-
ing properties agree over a very large energy range and
preserves the chemical hardness of the atom. A gener-
alized Kohn-Sham functional is directly minimized using
a preconditioned conjugate gradient method.!%:21:22 We
use a (6,6,6) Monkhorst-Pack k-point mesh?? for single-
cell calculations, i.e., 216 k points in the full Brillouin
zone (FBZ). For supercell calculations, the k mesh is kept
the same to minimize errors due to the k-point sampling.
Therefore, a smaller number of k points is used because
of the smaller FBZ.

We start with the construction of the local-mode vec-
tors. All the eigenvalues and eigenvectors of the force-
constant matrix at & = 0 for the cubic BaTiOjz struc-
ture are calculated from frozen-phonon calculations, as
in Ref. 10. The mode with imaginary frequency is iden-
tified as the soft mode. The soft-mode eigenvector has
been reported previouslyl® as &g, = 0.20, &1; = 0.76,
o = —0.53, and {o1 = —0.21. The local mode is then
constructed from it using the scheme proposed in Sec.
ITA.

Determination of many of the parameters in the ef-
fective Hamiltonian involves only calculations for zone-
center distortions. These parameters have been re-
ported previously.!®!2 They include the fourth-order
terms of on-site energy a and +; the elastic constants
B11, B12, Bsy; and the on-site elastic-mode interaction
parameters Bi,., Biyy, Bay.. The mode effective charge
Z* of Eq. (4) is calculated from the values Z3=2.75,
Z5="1.16, Z(*)”:——S.GQ, and Z§, =-2.11 published in
Ref. 12. (The resulting value Z*=9.96 is slightly differ-
ent from the one given in Ref. 12; there, the eigenvector
of the dynamical matrix, not the force-constant matrix,
was used.) We use the experimental value e, = 5.24
of the optical dielectric constant, since for this quantity,
the LDA seems not to be a well-justified approximation,
while exact density-functional theory results are not ac-
cessible. We find, however, that the effect of a small inac-
curacy in the dielectric constant affects thermodynamic
properties such as transition temperatures only slightly.

The second-order energy parameter x for zone-center
distortions is a linear combination of the local-mode self-
energy parameter k;, the intersite interactions j;, and
the dipole-dipole interaction. The calculations of inter-
site interaction parameters involve determination of the
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energy for distortions at the zone-boundary & points X =
(r/a,0,0), M = (x/a,n/a0), and R = (w/a,m/a,m/a),
where a is the lattice constant. Five frozen-phonon cal-
culations on doubled unit cells are sufficient to extract
all the information available from these k points. The
arrangements of the local-mode vectors for each case, as
well as for the zone-center distortion at I'=(0,0,0), are
shown in Fig. 2. The actual ionic configurations are con-
structed by superpositions of displacements associated
with adjacent local modes. For example, letting u be
the amplitude of the Ti-centered local mode defined in
Sec. IT A, the displacement of the Ti atoms is just u{T; in
Fig. 2(a) and +ufr; in Fig. 2(b), while Ba is affected by
eight neighboring local modes so that its displacement is
8ufpa/8 = uépa in Fig. 2(a) and 0 in Fig. 2(b).

The above five doubled-cell calculations can be used
to determine the parameters j;, j2, js, ja, and jg. The
determination of js + 2j7 requires a four-cell calculation
involving 20 atoms with low symmetry [Fig. 2(g)]. Ta-
ble I lists the energy expressions for all the configurations
calculated in terms of the quadratic expansion parame-
ters.

A further decomposition of js and j; would require an
expensive eight-cell calculation. Furthermore, the inter-
action parameter j; is the third nearest-neighbor interac-
tion and is thus presumably not very important. This ar-
gument is justified by our Monte Carlo simulations which

TABLE 1. The energy per five-atom unit cell (excluding
the dipole energy) in terms of intersite interaction parameters
of Fig. 2, for configurations shown in Fig. 3.

Configuration Expression

(a) K2 + 271 + j2 + 453 + 254 + 476
(b) K2 + 21 — J2 — 473 + 252 — 47Js
(c) k2 +J2 — 2j4 — 4Js

(d) k2 — 2j1 + j2 — 473 + 274 + 4Je
(e) K2 + j2 — 2j1 + 4js

(f) K2 — 2j1 — j2 + 473 + 2ja — 4Je
(8) K2/2 + j1 — 25 — 4J7

FIG. 2. The local-mode arrangements for
which first-principles total-energy calcula-
tions were performed to determine the in-
tersite interaction parameters. The arrange-
ments can be labeled by the wave vector k
and a polarization vector (p). The arrows
represent local-mode vectors. The dotted
lines indicate the unit cells of the simple cu-
bic lattice. The solid lines show the supercells
used in the calculations. (a) T', p = & ; (b)
X, p=8;(c) X, p=%; Q) M, p=14;
(e) M,p=%; (f) R, p=1%; (g) four-cell
calculation.

show that the calculated transition temperature is in-
sensitive to different decompositions of js and jy. This
prompts us to make an approximate decomposition based
on a simple physical argument: We expect the interaction
to be smallest for two interacting local modes oriented
such that reversing the relative sign of the vectors pro-
duces the least change of bond lengths. Applied to third
nearest neighbors, this argument implies jg — 257 = 0,
thus fixing the value of j-.

The resulting interaction parameters are shown in Ta-
ble II, together with other parameters published previ-
ously. It may be surprising to see that the on-site xj
is positive, while the cubic structure is known to be un-
stable against & = 0 distortion. The cubic structure is
thus stable against forming an isolated local mode; in-
stability actually comes from the intersite interactions
between local modes. To be more precise, we find that
it is the long-range Coulomb (dipole-dipole) interaction
which makes the ferroelectric state favorable. If we turn
off the dipole-dipole interaction by setting the effective
charge Z* = 0, we find that the ferroelectric instability
disappears. This is consistent with the previous point of
view that long-range Coulomb forces favor the ferroelec-
tric state, while short-range repulsions favor the nonpolar
cubic state.

From Table II, we see that the intersite interaction pa-
rameters decay very fast with increasing distance, indi-
cating the short-range nature of the intersite interactions
after the long-range Coulomb interactions have been sep-
arated out. The ratio of the magnitudes of the strongest

TABLE II. Expansion parameters of the Hamiltonian for
BaTiOs. Energies are in hartrees.

On-site K2 0.0568| « 0.320f ~ —0.473
ji —0.02734| j2 0.04020

Intersite 73 0.00927| js —0.00815| js 0.00580
Je 0.00370| j- 0.00185

Elastic B 4.64, B» 1.65| Bas 1.85

Coupling| Bigzs —2.18| Biyy —0.20| Bay. —0.08

Dipole zZ* 9.956| €0 5.24
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first-, second-, and third-neighbor interactions turns out
to be approximately 1 : 0.23 : 0.09. This decays even
faster than the dipole-dipole interactions, for which the
corresponding ratio (o< 1/R3) is 1 : 0.35 : 0.19. These
results help justify our approximation of including only
up to third nearest neighbors for the short-range inter-
actions.

IV. MONTE CARLO SIMULATIONS

For the quantitative study of the nonuniversal finite-
temperature behavior of a given model, Monte Carlo
simulation!®?* has emerged as the most reliable and pow-
erful technique. It is especially appropriate for a model
such as ours, with two continuous vector degrees of free-
dom per unit cell and both short- and long-range interac-
tions, for which analytical approaches such as renormal-
ization group or high-temperature expansions would be
cumbersome and involve additional approximations. In
comparison, the Monte Carlo approach requires only the
ability to compute changes in total-energy as the config-
uration is changed. Furthermore, with suitable analysis
of statistical errors and finite-size effects, the results of
Monte Carlo simulation can be made arbitrarily accurate.
Finally, with little additional effort, a number of physical
quantities can be computed to aid in characterization of
the transition.

We solve the effective Hamiltonian [Eqs. (2), (7), (9),
(11), and (14)] using Monte Carlo simulations with the
Metropolis algorithm?® on an L x L x L cubic lattice with
periodic boundary conditions. Since most energy contri-
butions (except E9P!) are local, we choose the single-flip
algorithm. That is, a trial move consists of an attempted
update of a single variable, after which the total energy
change is calculated to determine whether to accept the
move. The step sizes are adjusted to ensure an accep-
tance ratio of approximately 0.2. In one Monte Carlo
sweep (MCS), we first make a trial move on each u; in
sequence, then each v; in sequence, then iterate several
times (typically 2L times) on the homogeneous strain
variables. For L = 12, each MCS takes about one sec-
ond on an HP 735 workstation. The typical correlation
time for the total energy is found to be several hundred
MCS’s close to the phase transition; this long correlation
time makes certain new MC techniques using energy dis-
tribution functions?® unfavorable. The correlation times
for the local-mode amplitudes are one order of magni-
tude shorter, and thus 10000 MCS’s are usually enough
to equilibrate and to obtain averages of local-mode vari-
ables with a statistical error of < 10%.

In our simulation, we concentrate on identifying the
succession of low-temperature phases, determining the
phase transition temperatures and extracting qualitative
features of the transitions. This analysis will allow us to
identify the features of the effective Hamiltonian which
most strongly affect the transition properties. For these
purposes, it is most convenient to monitor directly the
behavior of the homogeneous strain and the vector order
parameter. In the case of the ferroelectric phase tran-
sition, the latter is just the average local-mode vector

u = ) .u;/N, which is proportional to the polariza-
tion. Here, u; is the local-mode vector at site ¢ and N
is the total number of sites. As a reference, the aver-
age local mode amplitude u = Y, |u;|/N is also mon-
itored. To avoid effects of symmetry-equivalent rota-
tions of the order parameter and to identify the differ-
ent phases clearly, we accumulate the absolute values of
the largest, middle, and smallest components of the av-
eraged local-mode vector for each step, denoted by wu,,
ug, and ug, respectively (u; > uz > us). The cubic (C),
tetragonal (T), orthorhombic (O), and rhombohedral (R)
phases are then characterized by zero, one, two, and three
nonzero order-parameter components, respectively. The
effect of symmetry-equivalent rotations on the homoge-
neous strain is handled analogously, with the largest, the
medium, and the smallest linear strain components de-
noted by 7;, 72, and 73, respectively, and shear strain
components by 74, 15, and 7e.

The ferroelectric phase transition is very sensitive to
hydrostatic pressure or, equivalently, to the lattice con-
stant. The LDA-calculated lattice constants are typi-
cally 1% too small, and even this small error can lead to
large errors in the zero-pressure transition temperatures.
One approach, which largely compensates for the effect
of this systematic error, is to exert a negative pressure
that expands the lattice constant to the experimental
value. We determine the value of the pressure by cal-
culating volumes for four different phases and comparing
with experimental measurements.?” We find P = —4.8
GPa gives the best overall agreement (although the ap-
plication of pressure does lead to a slight change in the
low-temperature structure). Except for the simulations
for the construction of the temperature-pressure phase
diagram, the following simulations and analysis are for
this pressure.

V. RESULTS AND DISCUSSION

In this section, the finite-temperature behavior of the
model is presented and analyzed. First, we examine the
order parameters as a function of temperature in a typical
simulation to obtain a measure of the transition tempera-
tures. From the results of simulations for a range of pres-
sures, we construct the temperature-pressure phase dia-
gram. For the system at ambient pressure, more detailed
simulations are performed. The order of the transitions,
the nature of the paraelectric phase, and the properties
of the low-temperature phases are investigated and com-
pared with experimental observations. Finally, the roles
played by different terms in the effective Hamiltonian and
the sensitivity of the results to various approximations
are examined.

A. Order parameters and phase diagram

We start the simulations at a high temperature (T' >
400 K) and equilibrate for 10000 MCS’s. The tempera-
ture is then reduced in small steps, typically 10 K. After
each step, the system is allowed to equilibrate for 10 000
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MCS’s. The order parameter averages are then accumu-
lated over a period of 7000 MCS'’s, yielding a typical
standard deviation of less than 10%. The temperature
step size is reduced and the number of MCS’s is doubled
for temperatures close to the phase transition.

We describe a typical simulation for an L = 12 lattice
at P = —4.8 GPa. At high temperatures, the averaged
local mode amplitudes uy, ug, and us are all very close
to zero. As the system is cooled down below 295 K,
u, increases and becomes significantly larger than us or
us. This indicates the transition to the tetragonal phase.
Two additional phase transitions occur as the temper-
ature is reduced further. The T-O transition (sudden
increase of uz) occurs at 230 K and the O-R transition
(sudden increase of u3) occurs at 190 K. This behavior is
plotted in Fig. 2 of Ref. 16. The sequence of transitions
exhibited by the simulation is the same as that observed
experimentally.

The averaged homogeneous strain variables obtained
from the above simulation are shown in Fig. 3. These
strains are measured relative to the LDA-calculated equi-
librium cubic structure, and so the linear strains are
significantly nonzero at higher temperatures due to the
negative pressure applied. As expected, the simulation
cell changes shape at the same temperatures at which
the jumps of the order-parameter components are ob-
served. At high temperatures, we have approximately
m = m = 73 and 9y = 75 = ne = 0, correspond-
ing to the cubic structure. As the system is cooled
down, the shape of the simulation cell changes to T, O,
and R phases. The orthorhombic (O) structure has a
nonzero shear strain, in agreement with the centered or-
thorhombic structure observed experimentally. Quanti-
tatively, our calculated distortions are also in good agree-
ment with the experiment, with the calculated distortions
tending to be slightly smaller. For example, 7;-73 for the
tetragonal phase is 1.1% as measured from experiment?’
and 0.9% from our calculation.

The simulations are repeated for a range of applied
pressures to obtain the temperatures at which the order-
parameter components and honogeneous strain jump on
cooling down. The resulting temperature-pressure phase
diagram is shown in Fig. 4. (This measure of the transi-
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FIG. 3. The averaged homogeneous strain g as a function
of temperature in the cooling-down simulation of a 12x12x 12
lattice described in Sec. IV. The strains are measured rela-
tive to the LDA minimum-energy cubic structure with lattice
constant 7.46 a.u. The dotted lines are guides to the eye.
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FIG. 4. The calculated pressure-temperature phase dia-
gram. The cubic-tetragonal (C-T'), tetragonal-orthorhombic
(T-0), and orthorhombic-rhombohedral (O- R) transitions are
labeled by solid triangles, circles, and squares, respectively.
The vertical dash-dotted line at P=—4.8 GPa, corresponds to
zero pressure in the experiment to compensate for the LDA
volume error.

tion temperature is actually a lower bound, due to hys-
teresis around 5% for T-O and O-R transitions and neg-
ligible for the C-T transition, to be discussed further be-
low.) All three transition temperatures decrease almost
linearly with increasing pressure. At the experimental
lattice constant, the values for dT./dP are found to be
—28, —22, and —15 K/GPa for the C-T', T-O, and O-R
transitions, respectively. The experimental values for the
C-T transition range from —40 K/GPa (Ref. 28) to —66
K/GPa.?® For the T-O transition the measured value is
—28 K/GPa,?® and for the O-R transition it is —10 to
—15 K/GPa.?® At pressures as high as P = 5 GPa, the
sequence of phases C-T-O-R is still observed in the simu-
lation. When the pressure is increased further, the phase
boundary in the simulation becomes unclear due to fluc-
tuations. Our calculated critical pressure (beyond which
the cubic structure is stable at T=0 K) is P. = 8.4 GPa.
Taking into account the pressure correction for the LDA
volume underestimate, this corresponds to a predicted
physical P. = 13.2 GPa. We are not aware of any exper-
imental value for P, with which to compare this value.
However, we find that the magnitude of our dT./dP is
significantly smaller than experimental value, at least for
the C-T and T-O transitions. This may partly be due to
the neglect of higher-order strain coupling terms in the ef-
fective Hamiltonian. We have tested the effect of includ-
ing a volume dependence for the short-range interaction
parameters j;. This correction does not change the se-
quence of phases, and it only increases the magnitudes of
dT./dP slightly. Therefore, our results are reported with-
out this correction. The accuracy of the phase diagram
may be further improved by including higher-order terms
in the elastic energy or the coupling of j; to anisotropic
strain.

Transition temperatures at P = —4.8 GPa for the
three system sizes L = 10, 12, and 14 are reported and
compared with experiment in Table III. (The details of
the determination of these values and their error esti-
mates appears in the next subsection.) The calculated
transition temperatures are well converged with respect
to system size and are in reasonable agreement with ex-



52 FIRST-PRINCIPLES THEORY OF FERROELECTRIC PHASE . . . 6309

TABLE III. Calculated transition temperatures T¢, sat-
urated spontaneous polarizations p,, and estimated latent
heats /, as a function of simulation cell size.

Phase] L=10 L=12 L=14 Expt.®
O-R| 19743 200+£10 200+5 183
T. (K) T-O | 230410 23242  230+10 278
C-T | ~290  296+1 29741 403
R 0.43 0.43 0.43 0.33
ps (C/m?) o 0.35 0.35 0.35 0.36
T 0.28 0.28 0.28 0.27
O-R 50 60 60 33-60
1 (J/mol) | T-O 90 90 100 65-92
C-T 150  196-209

“Ref. 27.

periment. While discrepancies of up to 30% between the-
ory and experiment may seem large, we believe this level
of agreement is quite good for an entirely ab initio ap-
proach, especially given the extreme sensitivity of the
transition temperatures to the lattice constant. Indeed,
it can be seen from Fig. 4 that a change of the fictitious
applied pressure from —5 to —7 GPa, corresponding to
a change of lattice constant of only about 0.4%, would
roughly be sufficient to bring the transition temperatures
into line with experiment. Thus, we believe that the dis-
crepancies with experiment are closely related to the in-
trinsic LDA lattice-constant error, which is incompletely
compensated for by the artifice of working at a predeter-
mined negative fictitious pressure.

B. Hysteresis and latent heat

For the investigation of the order of the transitions,
the nature of the paraelectric phase, and the properties
of the low-temperature phases, we performed more de-
tailed simulations at P = —4.8 GPa for the three system
sizes L = 10, 12, and 14. In the cooling-down simula-
tions, the length of each simulation was increased from
10000 to up to 35000 MCS’s at temperatures close (+10
K) to the phase transition to include a longer equilibra-
tion. The size of the temperature step was decreased to
5 K or less in the vicinity of the transition. In addition,
a heating simulation was performed, starting from the
lower-temperature phase, to detect any possible hystere-
sis. The calculated transition temperatures, obtained as
the average of the cooling and heating transition tem-
peratures, are given in Table III. The error estimates
in the table are determined by the width of the hystere-
sis, which persists even for the longest simulation lengths
considered. (The C-T transition temperature for L = 10
is difficult to identify because of large fluctuations be-
tween phases.)

Table III also gives the saturated spontaneous polar-
ization p, at T = 0 in the R phase, and just above the
O-R and T-O transitions in the O and T phases, respec-
tively. These are calculated from the average local-mode
vector u and the local mode Z*. We find almost no
finite-size dependence for this quantity, as long as it is
determined at a temperature which does not lie in one of

the hysteresis regions near the transition temperatures.
The agreement with experiment is very good for the O
and T phases. The disagreement for the R phase may
result in part from twinning effects in the experimental
sample.?°

From the jumps in structural parameters and the ob-
served hysteresis in heating and cooling, we conclude
that the phase transitions are first order. An accurate
determination of the latent heats would require consid-
erable effort;3! here, we only try to provide estimates
sufficiently accurate for meaningful comparison with ex-
periment. We approach each transition from both high-
temperature and low-temperature sides until the point is
reached where both phases appear equally stable. (That
is, the typical time for the system to fluctuate into the
opposite phase is roughly independent of which phase the
simulation is started in.) The difference of the average
total energy is then the latent heat.3? This approach is
practical as long as some hysteresis is present. The calcu-
lated latent heats (Table III) show non-negligible finite-
size dependence. Taking this into account, we find that
the latent heats for all three transitions are significantly
nonzero and in rough agreement with the rather scattered
experimental data. For the T-O and O-R transitions,
the first-order character of the transition is predicted by
Landau theory, since in these two cases the symmetry
group of the low-temperature structure is not a subgroup
of that of the high-temperature structure. For the C-T
transition, the first-order character is not a consequence
of symmetry, but rather of the values of the effective
Hamiltonian parameters. Although it has the largest la-
tent heat of the three transitions, the C-T transition also
exhibits large finite-size effects in the latent heat and in
the smearing of order-parameter components and strain
discontinuities in the simulation (Fig. 2 of Ref. 16 and
Fig. 3). This suggests the presence of long-wavelength
fluctuations characteristic of second-order phase transi-
tions and critical phenomena, and the classification of
the C-T transition as a weak first-order transition.

C. Displacive vs order-disorder

Using the microscopic information available in the sim-
ulations, we are able to investigate the extent to which
the cubic-tetragonal transition can be characterized as
an order-disorder or displacive transition. These possi-
bilities can be distinguished by inspecting the distribu-
tion of the real-space local-mode vector u; in the cubic
phase just above the transition. A displacive (microscop-
ically nonpolar) or order-disorder (microscopically polar)
transition should be characterized by a single-peaked or
double-peaked structure, respectively. The distribution
of u, at T = 400 K is shown in Fig. 5. It exhibits a rather
weak tendency to a double-peaked structure, indicating a
transition which has some degree of order-disorder char-
acter. We also see indications of this in the u-T rela-
tion in Fig. 2 of Ref. 16. Even in the cubic phase, the
average of the local-mode magnitude u is significantly
nonzero and close to that of the rhombohedral phase,
while the magnitudes of the average local-mode compo-
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FIG. 5. The probability distribution of the Cartesian com-
ponent of the local-mode variable u, in the cubic phase at
T = 320 K (solid line), 350 K (dashed line), and 500 K (dot-
ted line).

nents change dramatically during the phase transitions.

In reciprocal space, a system close to a displacive
transition should show large and strongly temperature-
dependent fluctuations of certain modes associated with
a small portion of the Brillouin zone (BZ) (for a ferroelec-
tric transition, near I'). For an extreme order-disorder
transition, on the other hand, the fluctuations are ex-
pected to be distributed over the whole BZ. For BaTiOs3,
we calculated the average Fourier modulus F(k,T) =
(Ju(k)|?) for eigenmodes at several high-symmetry k
points (along I'-X, I'-M, and I'-R) for a range of tem-
peratures above the C-T transition. These eigenmodes
are identified by their symmetry properties as one longi-
tudinal optical (LO) branch and two transverse optical
(TO) branches at each point. For a purely harmonic
system, T/F(k,T) can be shown to be a temperature-
independent constant proportional to the square of the
eigenfrequency w?(k) of the corresponding eigenmode. A
strong decrease of T/F(k,T) as T — T. from high tem-
perature can be interpreted as mode softening due to
anharmonicity.

The results at the k point (r/4a, m/4a, 0) illustrate
the main features of this analysis. From symmetry, three
nondegenerate eigenmodes LO, TO1, TO2 are identified.
The polarization of LO, TO1, and TO2 are in the di-
rection of X + §, X — y, and %, respectively. For each
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eigenmode, the temperature dependence of the calculated
w?(k, T) is shown in Fig. 6. The almost linear behavior of
w?(k,T) vs T (the Curie-Weiss form) is observed for the
other k points as well. Both the LO and TO1 branches
are almost temperature independent. The TO2 branch
is strongly temperature dependent and is thus a “soft”
mode. According to the soft-mode theory of structural
phase transitions, 7. is the lowest temperature at which
all w?(k,T) > 0. Linear extrapolation indicates that the
TO2 mode frequency goes to zero at T =~ 200 K, which
is a lower bound for T., consistent with the value ob-
tained in Monte Carlo simulations. A similar calculation
of w?(k,T) for the TO modes at I'=(0,0,0) extrapolates
to zero at the higher temperature T =~ 300 K, in excellent
agreement with the Monte Carlo value of 295 K.

Within this formalism, the microscopic character of the
paraelectric phase is determined by the extent of the soft
mode in the BZ. We define a quantity

p(k) = 2;:"(k,350 K) (15)

(k, 700 K)
to indicate the hardness of the modes. In Fig. 7, p(k)
is shown for the various k points along some special di-
rections in the BZ. If p(k) < 1, the corresponding eigen-
frequency extrapolates to zero at some positive temper-
ature, and the mode is regarded as soft. If w?(k) is inde-
pendent of temperature, p(k) = 2, corresponding to the
hardest mode.

For all the &k points considered, all the LO modes are
almost temperature independent [p(k) = 2] and are not
included in the figure. Along the I'-X direction, the dou-
bly degenerate TO modes are soft all the way to the zone
boundary. In contrast, along the I'-R direction, both
TO modes become hard immediately after leaving the
I' point. Along the I'-M direction, the TO1 mode be-
comes hard quickly, while the TO2 branch remains soft
at least halfway to the zone boundary. This behavior, es-
pecially along I'X, does not conform completely to the
displacive limit. This supports the interpretation of the
C-T transition as intermediate between a displacive and
order-disorder transition, with a slightly stronger order-
disorder character. Thus, from the example of BaTiOs3,
it seems that a positive on-site quadratic coefficient does
not automatically imply a displacive character for the
transition. Rather, the relevant criterion is the extent to
which the unstable modes extend throughout the BZ.
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FIG. 6. Temperature dependence of squared eigenfre-
quency w® at k = (n/4a,7/4a,0) for (a) LO, (b) TO1, and
(c) TO2 modes.

FIG. 7. Calculated mode hardness quantity p(k), Eq. (15),
along special directions in the Brillouin zone.
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D. Roles of different interactions

Our theoretical approach allows us to investigate the
roles played by different types of interaction in the phase
transition. First, we study the effect of strain. Recall
that the strain degrees of freedom were separated into
local and homogeneous parts, representing finite- and
infinite-wavelength acoustic modes, respectively. Both
parts were included in the simulations. If we eliminate
the local strain (while still allowing homogeneous strain),
we find almost no change in the transition temperatures.
This indicates that the effect of the short-wavelength
acoustic modes may not be important for the ferroelec-
tric phase transition. If the homogeneous strain is frozen
at zero, however, we find a direct cubic-rhombohedral
phase transition, instead of the correct series of three
transitions. This demonstrates the important role of ho-
mogeneous strain.

Second, we studied the significance of the long-range
Coulomb interaction in the simulation. To do this, we
changed the effective charge of the local mode (and thus
the dipole-dipole interaction strength), while modifying
the second-order self-energy parameter ks, so that the
frequencies of the zone-center and zone-boundary modes
remain in agreement with the LDA values. We found
only a slight change (10%) of the transition temperatures
when the dipole-dipole interaction strength was doubled.
However, elimination of the dipole-dipole interaction al-
together changed the results dramatically; the ground
state becomes a complex antiferroelectric structure sim-
ilar to the room-temperature structure of PbZrO5. This
result shows that it is essential to include the long-range
interaction, although small inaccuracies in the calculated
values of the effective charges or dielectric constants may
not be very critical.

Third, we investigated the sensitivity of our results to
variations of the short-range interaction parameters. We
find the accuracy of the first-neighbor interaction param-
eters (ji,j2) is very important, and a mere 10% devi-
ation can change the calculated transition temperatures
dramatically, and can sometimes even change the ground
state structure. Second nearest-neighbor interactions are
less important, and for the third-neighbor interactions,
even a 100% change does not seem to have a strong ef-
fect on the values of T,.. This result is to be expected, and
partly justifies our choice of including only up to third
neighbors for the short-range interactions. We have also
tested the effect of our assumption j5 — 257 = 0. We find
that any reasonable choice leads to a barely noticeable
change in T..

In short, highly accurate LDA calculations do appear

to be a prerequisite for an accurate determination of the
transition temperatures, but as long as certain features
of the energy surface are correctly described, other ap-
proximations can be made without significantly affecting
the results.

VI. CONCLUSIONS

We have developed a first-principles approach to
the study of structural phase transitions and finite-
temperature properties in perovskite compounds. We
construct an effective Hamiltonian based on Taylor ex-
pansion of the energy surface around the cubic structure,
including soft optical modes and strain components as
the possible distortions. The expansion parameters are
determined by first-principles density-functional calcula-
tions using Vanderbilt’s ultrasoft pseudopotential.

We have applied this scheme to BaTiOs and calcu-
lated the pressure-temperature phase diagram. We have
obtained the sequence of low-temperature phases, the
transition temperatures, and the spontaneous polariza-
tions, and found them to be in good agreement with ex-
periment. We find that long-wavelength acoustic modes
and long-range dipolar interactions both play an impor-
tant role in the phase transition, while short-wavelength
acoustic modes are not as significant. Accurate LDA
calculations are required for accurate determination of
the transition temperatures. The C-T phase transition
is not found to be well described as a simple displacive
transition; on the contrary, if anything it has more order-
disorder character.

With slight modifications, our approach should be
applicable to other perovskite compounds, as long as
their structure is close to cubic and there are some low-
energy distortions responsible for the phase transitions.
It can be easily applied to ferroelectric materials like
PbTiO3 (under study by another group'?) and KNbOs.
It can also be applied to antiferroelectric materials like
PbZrOj3;. The application to antiferrodistortive materi-
als like SrTiOg is slightly more involved, though also
successful.33
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We study the antiferrodistortive instability and its interaction with ferroelectricity in cubic perovskite
compounds. Our first-principles calculations show that coexistence of both instabilities is very common.
We develop a first-principles scheme to study the thermodynamics of these compounds when both
instabilities are present, and apply it to SrTiO; We find that increased pressure enhances the
antiferrodistortive instability while suppressing the ferroelectric one. Moreover, the presence of one
instability tends to suppress the other. A very rich P-T phase diagram results.

PACS numbers: 77.80.Bh, 61.50.Lt, 64.60.Cn, 64.70.-p

The great fascination of the cubic perovskite structure is
that it can readily display a variety of structural phase tran-
sitions, ranging from nonpolar antiferrodistortive (AFD) to
ferroelectric (FE) and antiferroelectric in nature [1]. The
competition between these different instabilities evidently
plays itself out in a variety of ways, depending on the
chemical species involved, leading to the unusual variety
and richness of the observed structural phase diagrams.
Moreover, all the phase transitions involve only small dis-
tortions from the ideal cubic structure, and are therefore
appealing objects for experimental and theoretical study.
However, our microscopic understanding of the chemical
origins of these instabilities and of their interactions is still
very limited.

Thus, there is a pressing need for accurate, chemi-
cally specific investigations of the structural energetics of
these compounds, leading to a detailed understanding of
the phase transition behavior. Previous phenomenologi-
cal model Hamiltonian approaches [2-5] have been lim-
ited by oversimplification and ambiguities in interpretation
of experiment, while empirical [6] and nonempirical pair-
potential methods [7] have not offered high enough accu-
racy. First-principles density-functional calculations have
been shown to provide accurate total-energy surfaces for
perovskites as regards FE distortions [8~10]. However, to
our knowledge, there have been no previous first-principles
studies of AFD distortions, and therefore no detailed mi-
croscopic theories of the phase transformation behavior.

Here, we build upon previous work in which a fully
first-principles scheme was used to study the FE transi-
tions in BaTiO;, leading to an accurate microscopic un-
derstanding of the phase transition sequence [11]. In the
present work, we develop a similar approach which is ca-
pable of treating simultaneously the FE and AFD degrees
of freedom, allowing for the first time a detailed ab initio
study of the phase behavior for perovskites in which both
instabilities are present. We present systematic calcula-
tions of the susceptibility against R-point zone-boundary
AFD modes for a set of eight compounds, demonstrat-
ing that the AFD instability is very common. Then, we
briefly describe our first-principles scheme for studying
finite-temperature properties, and apply it to S'TiO;. We
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study the evolution of the phonon instabilities with tem-
perature, and calculate the P-T phase diagram. In so do-
ing, we compute the interactions between the AFD and
FE instabilities, and expose their implications for the ther-
modynamic properties.

The high-symmetry ABO; perovskite structure is simple
cubic with O atoms at the face centers and metal atoms A
and B at the cube corner and body center, respectively. The
two most common instabilities result from a softening of
either a zone-center polar phonon mode (FE) or a nonpolar
zone-boundary mode (AFD) involving rigid rotations of
oxygen octahedra. These modes are illustrated in the
left and right insets, respectively, in Fig. 1. BaTiO; is a
classical example of the first type, while the best-known
example of the second kind is the T = 105 K transition in
SrTiO; [5], which results from a softening of a I';s phonon
at R [(111)ar/al.

The stability of perovskite compounds against R-point
phonon distortions can be expressed in terms of a stiffness
kR = 3 9°E/3¢?, where ¢ is the rotation angle of the

oxygen octahedra. To obtain xR, we perform frozen

RE) | MAR) TAP 'll(AS,

2z -

Pressure (Gpa)

FIG. 1. T = 0 order parameters vs pressure for SrTiO;. Solid
and dashed lines denote Cartesian components of f(I') and
a(R), respectively. Phases are labeled by lattice symmetry
(R = rhombohedral, M = monoclinic, T = tetragonal, O = or-
thorhombic) and by instabilities present (A =antiferrodistortive,

= ferroelectric). Dotted lines denote phase boundaries. Ver-
tical arrow indicates theoretical pressure Py at which the lat-
tice constant matches the experimental P = 0 one. Left inset:
sketch of displacements leading to R(F) phase (Sr is omitted
for clarity). Right inset: same for T(A) phase.

© 1995 The American Physical Society 2587



VOLUME 74, NUMBER 13

PHYSICAL REVIEW LETTERS

27 MARCH 1995

TABLE 1. Calculated stiffness «® of R-point AFD phonon
mode (in Hartree), and tolerance factor ¢, for several perovskite
compounds.

xR t xR t
BaTiO; 0.295 1.07 SrTiO; -0.042 1.01
KNbO, 0.242 1.06 NaNbO, -0.133 0.97
BaZrO; -0.021 1.01 PbZrO, —-0.324 0.97
PbTiO; -0.037 1.03 CaTiOs —0.375 0.97

phonon calculations using density-functional theory within
the local-density approximation (LDA) and Vanderbilt
ultrasoft pseudopotentials [12]. In Table I, we list values
of «® for a set of eight compounds, calculated at the
experimental lattice constants [13] as listed in Ref. [10].
Negative values indicate instability to R-point phonon
distortions.

Table I shows that the tendency towards AFD instabil-
ity is strongly correlated with trends in ionic radii. Such
trends in an ABO; compound are conventionally described
by a tolerance factor 1 = (r4 + ro)/V2(rg + ro). Val-
ues for r are given in Table I, using the ionic radii of
Ref. [14]. We find that «z is almost monotonic with ¢;
i.e., a larger A or a smaller B atom tends to stabilize the
cubic structure. This simple behavior contrasts with the
case of the ferroelectric instability, where covalent inter-
actions play an important role [15].

Inspecting Table I, we see that the two compounds
BaTiO; and KNbO; are clearly stable with respect to
AFD distortions, consistent with experimental observa-
tions. (Both materials undergo a similar series of FE
transitions.) On the other extreme, we find that CaTiO;,
PbZrO;, and NaNbO; have a strong AFD instability. All
three compounds are also predicted to have FE instabilities
[10], consistent with the observation of complex phase dia-
grams and high transition temperatures in all three cases.
Finally, our calculations for SrTiQ, PbTiO;, and BaZrO;
show a weak AFD instability. PbTiO; is observed to go
through a weak unidentified transition at 7 = 180 K [16]
which could be AFD related. BaZrOj; is observed to re-
main cubic down to T = 0; the weak instability predicted
by our calculation could be suppressed by quantum zero-
point fluctuations. For SrTiO;, we predict a weak AFD
instability consistent with a low T, of 105 K observed for
its cubic-to-AFD transition.

The above calculations indicate that coexistence of FE
and AFD instabilities is very common in perovskites. To
study the consequence of such a situation, we have chosen
to study the case of SrTiO; in depth. Our first-principles
scheme can be explained briefly as follows. The energy
is Taylor expanded in low-energy distortions, with expan-
sion parameters determined from LDA calculations. The
resulting Hamiltonian is studied using Monte Carlo (MC)
simulations. The low-energy distortions we included are
those connected with zone-center FE-like modes, zone-
boundary AFD-like modes, and strain. To do this we con-
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struct a FE “local mode” such that a uniform arrangement
of local mode amplitudes f; reproduces the softest zone-
center I'ys (FE) modes (/ is a cell index). Similarly, we
construct an AFD local mode (a local rotation of an oxygen
octahedron) so that a staggered arrangement of amplitudes
a; reproduces the I';5(R) mode. Finally, the local strains
are represented in terms of a displacement vector u,.

Thus, we have three vector degrees of freedom f;, a,,
and u; per cell. The energy terms retained in our Taylor
expansion of the potential energy are as follows: (i) on-
site self-energy, up to quartic anharmonic order for f;
and a;, and up to harmonic order for u, (elastic energy);
(ii) harmonic intersite interactions between f; (including
long-range dipole-dipole interactions) and a; (short-range
only); and (iii) on-site coupling energy to the lowest or-
der between a; and u,, between f; and u,, and between
f; and a,. The determination of the expansion parameters
involves LDA calculations for supercells containing up to
20 atoms with low symmetry, using ultrasoft pseudopo-
tentials [12]. The details of the Hamiltonian, the first-
principles calculations, and the values of the expansion
parameters will be presented elsewhere [17].

To obtain the structural and thermodynamic properties,
we perform MC simulations on an L X L X L cubic lat-
tice with periodic boundary conditions [18]. The identifi-
cation of different phases can be made by monitoring the
FE order parameter f(I') (the Fourier transform of f; at
k = TI'), and similarly the AFD order parameters a(R) and
a(M) [M = (110)7/a]. a(M) is found to remain small for
SrTiO;, and will not be discussed further.

We first investigate the ground-state structure for SrTiO3
as a function of hydrostatic pressure. We find it convenient
to run the MC calculations at L = 4 at T = 0.1 K (finite-
size and hysteresis effects are not important at low T).
The calculated order parameters a(R) and f(I') are shown
in Fig. 1. Zero pressure in the figure corresponds to
the LDA-calculated equilibrium lattice constant, which
is about 1% too small. Since both the FE and AFD
instabilities are sensitive to lattice constant, comparison
with the experimental phase diagram is best made with the
zero of the pressure axis shifted by Py = ~5.4 GPa (see
arrow in Fig. 1), the value which restores the experimental
lattice constant. From Fig. 1, we see that pressure has
opposite effects on a(R) and f(I), and that as a function of
pressure the ground state of SrTiO; can have four phases.
The cubic phase, which is stable at high temperature, is not
present. At high pressure, only one component of a(R) is
nonzero, indicating an AFD tetragonal structure (/4/mcm).
As P is lowered, the corresponding (z) component of
f(I') becomes nonzero, and the structure transforms to
tetragonal with FE and AFD (Il4cm). A further decrease
of pressure creates a low-symmetry monoclinic structure
(Pb), in which all components of f(I') and a(R) are
nonzero. Finally, below —8 GPa the structure becomes
FE rhombohedral (R3m). We see that the coexistence of
zone-center and zone-boundary instabilities creates many
different phases and complicated structures, evenat 7 = 0.
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At finite temperature, the behavior becomes even more
interesting. We first show our MC simulation for P = Py
(—5.4 GPa) and L = 12. We start at high temperature
and decrease T in small steps, allowing the system to
reach equilibrium at each step. The hysteresis and finite-
size effects on the transition temperatures are found to
be negligible. In Fig. 2, we show the order parameters
f(I') and a(R) as a function of T. (Since the order
parameter vectors may rotate, what we actually show
are the averaged maximum, intermediate, and minimum
components of each vector.) Naturally, the system is
found to adopt the cubic structure at high temperature. As
T is reduced, a transition to an AFD tetragonal structure
occurs at 130 K, as indicated by a strong increase of
a.(R). A second transition occurs at T = 70 K to a FE
tetragonal structure, below which f,(I') > 0. At very low
temperature (10 K), the system transforms to the low-
symmetry monoclinic structure.

Comparing with experiment, we see that our cubic-
to-AFD(T) transition at 130 K corresponds very well to
the observed one at 105 K [19]. Our observations of
additional transitions to AFD + FE phases at 70 and
10 K are not, however, in direct accord with experiment.
Instead, they agree with the observed softening of the FE
polar phonons, which would extrapolate to a FE transition
close to 40 K [20] or 20 K [21]. It has been speculated
that the absence of a true FE phase at T = 0 is a result
of quantum fluctuations of atomic positions, leading to
crossover into a “quantum paraelectric phase” at very low
temperature [20-22]. Our inability to obtain agreement
between the classical MC theory and experiment at T = 0
lends additional support to this conclusion.

To construct a P-T phase diagram, we have carried out
a series of similar cooling-down simulations at different
pressures. As shown in Fig. 3, there are at least seven dif-
ferent phases present. At strong negative pressure, SrTiO;
behaves rather like BaTiOs, with a cubic — tetragonal —
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FIG. 2. Order parameters of SrTiO; vs T at P, = —5.4 GPa.
Upper panel: averaged largest, middle, and smailest Cartesian
components of a(R). Lower panel: corresponding quantities for
f(I'). Phase labels are the same as in Fig. |.
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FIG. 3. P-T phase diagram of SrTiO;. Hatching indicates
the critical region where dramatic changes occur. Vertical
dash-dotted line indicates the pressure P, corresponding to
experimental P = 0. Phase labels are the same as in Fig. 1.

orthorhombic — rhombohedral sequence of transitions on
cooling. Increasing the hydrostatic pressure tends to sta-
bilize the AFD state and destabilize the FE one. The
pressure coefficient d7./dP = 28 K/GPa at P, agrees
well with the experimental value of 25 K/GPa [23]. At
very high pressure, the system undergoes a single transi-
tion to a tetragonal AFD structure. In the intermediate
regime, the presence of both kinds of instabilities creates

a variety of phases, including the complicated monoclinic

structure. The ordering of the FE and AFD transition tem-
peratures reverses ~1.5 GPa below Py (hatched area in
Fig. 3). In this critical region the AFD and FE transition
temperature change dramatically, and the system may pos-
sess some interesting characteristics (e.g., extreme dielec-
tric properties).

The dramatic reversal of the AFD and FE transition
temperatures in the hashed region of the P-T phase
diagram suggests the presence of a competition between
the two instabilities. Our first-principles theory confirms
this and provides microscopic insight into the competition.
The FE and AFD instabilities affect each other mainly
through the on-site anharmonic coupling, and through
their mutual coupling to the elasticity. In SrTiO;, the on-
site coupling is found to lead the FE and AFD modes
to suppress one another, while the coupling through
strain tends to stabilize tetragonal phases relative to other
phases. Our calculations show that the former effect
dominates.

One way of quantifying the importance of this com-
petition is to compare with what would happen if the
FE or AFD degrees of freedom were artificially frozen
out. We find that at Py, the AFD transition temperature
would be 25% higher if all f; were frozen to zero; con-
versely, the FE C-T transition would be 20% higher if
all a, = 0. At T = 0, freezing f; = 0 reduces the cubic-
to-AFD transition pressure from —8 to —11.8 GPa, while
freezing a; = 0 increases the cubic-to-FE transition from
—1.5 to 0.8 GPa. Thus, we see clearly that the FE and
AFD instabilities compete with and tend to suppress one
another. Because of this competition, the T(A. F) phase
at Py is only slightly more stable than the T(A) phase,
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even at T = 0; the energy surface relative to the FE dis-
tortion takes the form of a very long and shallow double
well. This may help explain the observed suppression of
the ferroelectric phase by quantum fluctuations [20-22].

Much of the interesting portion of our phase diagram
appears to the left of Py, i.e., at negative (inaccessible)
physical pressures. It would be interesting, therefore, to
consider compounds such as CaTiO; or NaNbO; which
are FE at Py, and study AFD instabilities at elevated P.
While the exact details of our phase diagram for SrTiOs
should not be expected to carry over to other perovskites,
we expect the general features to persist, especially the
tendency of the FE and AFD instabilities to suppress each
other and the presence of complicated phase diagrams
with numerous phases.

In conclusion, we have performed a fully first-
principles study of the finite-temperature properties of
perovskite compounds with both FE- and AFD-type
instabilities. We find that AFD instabilities are almost
as common as FE ones in cubic perovskite compounds.
For SrTiO;, our calculated P-T phase diagram shows that
the FE and AFD instabilities have opposite trends with
pressure. The anharmonic on-site coupling between order
parameters causes the AFD and FE instabilities to tend to
suppress one another.
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Using path-integral Monte Carlo simulations and an ab initio effective Hamiltonian, we study the effects of
quantum fluctuations on structural phase transitions in the cubic perovskite compounds SrTiO; and
BaTiO;. We find quantum fluctuations affect ferroelectric (FE) transitions more strongly than antiferrodistor-
tive (AFD) ones, even though the effective mass of a single FE local mode is larger. For SrTiO; we find that
the quantum fluctuations suppress the FE transition completely, and reduce the AFD transition temperature
from 130 to 110 K. For BaTiO,, quantum fluctuations do not affect the order of the transition, but do reduce
the transition temperature by 35-50 K. The implications of the calculations are discussed.

Quantum fluctuations typically have a very important ef-
fect on the structural and thermodynamic properties of ma-
terials consisting of light atoms like hydrogen and helium.
For example, quantum effects introduce large corrections to
the calculated hydrogen density distribution in the Nb:H
system.1 For materials with heavier atoms, however, the
quantum fluctuation can have only a small effect on the dis-
tribution of atomic displacements, and thus typically do not
have a noticeable effect on the structural and thermodynamic
properties of the material. However, exceptions may occur.
As we shall see, the cubic perovskites can exhibit decisive
quantum-fluctuation effects, despite the fact that the lightest
constituent is oxygen. This can occur because these materials
have several competing structures with very small structural
and energetic differences.’

A good example is SrTiO ;. While it has the simple cubic
perovskite structure at high temperature, SrTiO; goes
through an antiferrodistortive (AFD) transition at 105 K to a
tetragonal phase in which the oxygen octahedra have rotated
in opposite senses in neighboring unit cells. The observed
softening of the ferroelectric (FE) polar phonons with further
reduction of temperature in the range 50-100 K would ap-
pear to extrapolate to a FE transition close to 20 K, but
instead the softening saturates and no such transition is
observed.? The absence of a true FE transition is suggested to
be suppressed by quantum fluctuations, giving rise to a
“quantum paraelectric” phase at very low temperature.*
Some experiments appear to suggest a sharp transition to this
low-temperature phase at about 40 K, perhaps indicating the
formation of some kind quantum coherent state.>® However,
until a plausible candidate for the order parameter of the
low-temperature phase is put forward, these ideas must re-
main highly speculative.

These developments have stimulated many theoretical ef-
forts to understand the quantum effects in SrTiO; 47-% How-
ever, the previous work has all been qualitative or empirical
in approach. Although it was shown that quantum zero-point
motion is capable of suppressing phase transitions,” a de-
tailed microscopic approach is needed to gain a quantitative
and detailed understanding of the quantum effects at finite
temperature. Recently, an ab initio effective-Hamiltonian
scheme has been developed to study structural phase transi-
tions of cubic perovskites. It has been successfully applied to

0163-1829/96/53(9)/5047(4)/$10.00 33

BaTiO; (Refs. 10 and 11) and SrTiO5,'*13 giving good
agreement with experimental observations. Treating atomic
motion classically, it predicted FE phase transitions for
SrTiO; at low temperature, thus giving indirect support for
the notion that quantum fluctuations (not included in the
theory) must be responsible for the observed absence of a
low-temperature FE phase.

In the present work, we have extended the previous treat-
ment of the first-principles based effective Hamiltonian to
include quantum fluctuations. In particular, we use path-
integral (PI) quantum Monte Carlo simulations to study the
effect of quantum fluctuations on the structural phase transi-
tions in SrTiO4 and BaTiO;. For SITiO5, we find that the
quantum fluctuations have only a modest effect on the AFD
transition temperature, while the FE transition is suppressed
entirely. We discuss the relative importance of AFD and FE
quantum fluctuations in some detail, and examine the poten-
tial implications of our results for understanding the low-
temperature behavior of the material. For BaTiO3, in which
the FE transitions occur at higher temperature, we find that
the quantum effects are less dramatic.

We start by reviewing the effective Hamiltonian and its
construction. Two approximations are involved. First, since
both the FE and AFD transitions involve only small struc-
tural distortions, we represent the energy surface by a Taylor
expansion around the high-symmetry cubic perovskite struc-
ture, including up to fourth-order anharmonic terms. Second,
because only low-energy distortions are important to the
structural properties, we include only three such distortions
in our expansion: the soft FE mode, the AFD mode, and an
elastic mode. These are represented, respectively, by local-
mode amplitudes f;, a;, and u;, where i is a cell index. The
local modes are constructed in such a way that a uniform (or,
for AFD, a uniformly staggered) arrangement of the mode
vectors represents the desired low-energy excitation.!! Thus,
we work with local-mode vectors instead of atomic displace-
ments. This reduces the number of degrees of freedom from
15 to 9 per cell and greatly reduces the complexity of the
Taylor expansion. The Hamiltonian is specified by a set of
expansion parameters determined using highly accurate first-
principles  calculations ~ with ~ Vanderbilt  ultrasoft
pseudopotentials.14 The details of the Hamiltonian, the first-
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principles calculations, and the values of the expansion pa-
rameters have been reported elsewhere.!?~13

In our previous work, we have used this effective Hamil-
tonian by applying Monte Carlo simulation techniques to
study the thermodynamics of the system in the classical
limit. Assuming the ionic motions are classical is usually a
good approximation for systems such as cubic perovskites
containing atoms no less massive than oxygen. However, the
structural differences and energy barriers between the cubic
structure and the possible (thombohedral or tetragonal) dis-
torted structures are very small. A rough estimate of the im-
portance of quantum fluctuations can be obtained from the
Heisenberg uncertainty principle Ap-Ag=#/2, or equiva-
lently,

AE=1%(8mAg?). 1)

Here, Ag denotes the uncertainty in the structural coordinate,
which is related to the structural difference between phases.
AE is the energy uncertainty, or zero-point energy, which
may prevent the occurrence of the distorted phase if it is
larger than the classical free-energy reduction. So if the
structural and energetic differences between phases are small
enough, quantum suppression may occur even for fairly mas-
sive ions. For a quantitative understanding, we need to per-
form statistical simulations that treat the ionic motion quan-
tum mechanically.

Here, we adopt the path-integral (PI) technique'” of quan-
tum simulations, which has proven to be a very successful
method for studying H- and He-related systems.!''® The
method is based on Feynman’s PI formulation of quantum
mechanics.'” This formulation states that the partition func-
tion of the original quantum-statistical systems of particles
can be approximated by the partition function of P sub-
systems of classical particles with each quantum particle re-
placed by a cyclic chain of P beads coupled by harmonic
springs. Each subsystem (comprising one bead from each
chain) has internal interactions identical to the reference clas-
sical system, except for a reduction in strength by a factor
1/P. The spring constant of the harmonic springs coupling
the beads inside a certain cyclic chain is m P/4? 82, where m
is the mass of the quantum particle and 8 the inverse tem-
perature (kzT)~'. This approximation becomes exact when
the number of beads P—, but in practice almost exact
results can be obtained with a finite P depending on the
system of interest. This way, thermodynamic properties of
the N-particle quantum system can be obtained from the
study of a (PXN)-particle classical system.

The only extra inputs we need are the masses of all the
“particles” in our system. The degrees of freedom in our
Hamiltonian are the three local-mode amplitude vectors f;,
a;, and u; associated with each unit cell i. Each local mode
involves displacements of several ions. If we regard each
local vector as representing the displacement of some
“pseudoparticle,” the mass of each such pseudoparticle can
be determined from all the ionic displacements involved.
Since two local-mode vectors may involve the same ion, we
actually have a nondiagonal mass matrix. For example, the
mass matrix elements between local modes f; and f;, or
equivalently, f;, and f;5, can be constructed through

mia,jﬁzf(ia)'M‘f(j,B)- ()

Here, i and j are the cell indices, while & and B denote
Cartesian components. £(iw) is the eigenvector describing
atomic displacements associated with local mode f;,, and M
is a (diagonal) mass matrix in the 15L3-dimensional space of
atomic displacements of our LXLXL supercell. Similarly,
mass matrix elements connecting different kinds of local
vectors, such as those between f; and a;, are also included.
The entire mass matrix can be calculated once and for all,
and the extension of the PI technique to handle a nondiago-
nal mass matrix is straightforward.

The study of the thermodynamic properties of the classi-
cal system is performed using Monte Carlo (MC)
simulations.!® The original simulation cell is an LXLXL
cube, with three vectors f;, a;, and w; at each lattice point i.
Periodic boundary conditions are used, and homogeneous
strains of the entire supercell are included. Each local vector
is converted to a string of P beads, so that we have 9PL>
degrees of freedom per simulation supercell. We use a
single-flip algorithm, making trial moves of the vectors at
each site in turn and testing acceptance after each move. We
say that one Monte Carlo sweep (MCS) has been completed
when all vectors on all sites have been tried once. Because of
the 1% lattice-constant error in our local-density approxima-
tion (LDA) calculations and the strong sensitivity of the
structural transitions to the lattice constant, all our simula-
tions are performed at a negative pressure to restore the ex-
periment lattice constant, as in our previous work.!%-13

The Trotter number P should be large enough to ensure
that the quantum effects are correctly accounted for. On the
other hand, the computational load increases rapidly with
increasing P, because of both larger system size and longer
correlation time with larger P. In our simulation, the proper
Trotter number for each temperature is chosen empirically.
For a certain temperature, we simulate systems with increas-
ing Trotter number P=1, 2, 4, 8, 16, .... We equilibrate
systems with each P and monitor their order parameters. We
determine that the P is large enough if the monitored quan-
tities converge. If a certain quantity is sensitive to P, its
value at P=o can be extrapolated following the formula
ag+a,/P+a,/P? (Ref. 19).

We concentrate on SrTiO; and study the effect of quan-
tum fluctuation on both FE and AFD phase transitions. In
Fig. 1, we show the FE and AFD order parameters f(I') and
a(R) as a function of temperature for a 12X 12X 12 simula-
tion cell. The classical data (previously published in Ref. 12)
are produced by a cooling-down simulation, starting at 250
K and cooling down gradually, equilibrating and then simu-
lating to obtain the order parameters.'? The quantum simula-
tions are performed with P =4, which is found to give con-
verged results for 7>60 K and qualitatively correct results
for T>20 K. We use the equilibrium configuration from the
classical simulations (P =1) as the starting configuration. We
find the system reaches equilibrium faster this way than it
does if gradually cooled and the results are less affected by
hysteresis. The system is equilibrated for 10 000 MCS’s, and
then another 30 000—70 000 MCS’s are used to obtain the
reported thermodynamic averages.

Figure 1 shows that the quantum fluctuations do affect
both the AFD and FE phase transitions. The AFD phase tran-
sition temperature decreases from 130 K to 110 K when the
quantum fluctuations are turned on, bringing the results into
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FIG. 1. AFD and FE order parameters a(R) and f(I") as a func-
tion of temperature for a 12X 12X12 SrTiO; simulation cell.
Squares, circles, and triangles indicate the largest, intermediate, and
smallest components of the order parameter, respectively. Filled
symbols are from classical simulations, while open symbols are
from path-integral simulations with P=4 (the latter for the FE case
are nearly zero and are thus not very visible). Insets indicate sche-
matically the nature of the AFD and FE distortions.

better agreement with the experimental result of 105 K. On
the other hand, the quantum fluctuations can be seen to have
completely suppressed the FE phase transitions, at least
down to 40 K. Further simulations going as high as P=20
place an upper bound of about 5 K on any possible FE phase
transition temperature. Thus, we conclude that quantum fluc-
tuations almost certainly suppress the FE phase transitions
completely, resulting in a paraelectric phase down to T=0.

Since the effect of quantum fluctuations is more dramatic
on the FE transitions, we analyze this case in more detail. In
the paraelectric phase, the fluctuation of the FE local-mode
vector f has both quantum and thermal contributions. We
identify the thermal fluctuations as those associated with the
fluctuations of the center of gravity of the cyclic chain. More
specifically, letting f(i,s,?) represent f on lattice site i, Trot-
ter slice s, and MCS ¢, the thermal fluctuation can be ob-
tained from our simulation using

(A 2= ()21 3)
while the total fluctuation is
(AFN =2 ;.- 4)

Here the brackets represent the indicated average. The part of
fluctuation due solely to the quantum effects can be obtained
from (AfM)2=(Afo2— (A pthemaly2  The result for a
10X 10X 10 lattice is shown in Fig. 2. The results are ob-
tained from simulations at several small Trotter numbers and
then extrapolated to P=c using the formula
ag+a;/P+a,/P%. As expected, the thermal fluctuation de-
crease with decreasing temperature, while the quantum fluc-
tuations increase. Below 70 K, the quantum fluctuations
dominate.

Recent experiments suggest there may be a weak signa-
ture of a phase transition in SrTiO ; around 40 K.> This was
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FIG. 2. Classical (squares), quantum (circles), and total (tri-
angles) RMS fluctuation of the FE local-mode vectors [Egs. (3) and
(4)] in SrTiO; as a function of temperature.

tentatively suggested to be a phase transition to a coherent
quantum state in which small FE domains propagate through
the crystal. Because the size of our simulation cell is much
smaller than the domain size suggested, we expect that such
a state would appear as a real FE phase in our simulation.
This is not observed. However, our simulation does reveal
some changes in the character of the FE fluctuations at low
temperature. A typical FE fluctuation at high temperature re-
sembles the soft eigenvector of the force-constant matrix,
which is independent of the masses, since the classical ther-
modynamic properties are related only to the potential en-
ergy. However, the quantum fluctuations are quite sensitive
to the ionic masses, and at low temperature the fluctuations
of light (primarily oxygen-related) degrees of freedom are
accentuated. This crossover in the character of the fluctua-
tions occurs gradually below 100 K, and we suspect that it
might possibly be responsible for the experimentally ob-
served anomalies which were interpreted in terms of a phase
transition. If this is the case, the “quantum paraelectric”
phase at very low temperature is probably not separated by a
true phase transition from the classical paraelectric phase at
higher temperature.

To better characterize the impact of the quantum effects
on FE transitions, we also apply the PI simulations to
BaTiOj;. The results are summarized in Table I. The simula-
tion procedure is the same as for SrTiO;, except that the
AFD degrees of freedom are neglected in BaTiO ; because of
their high energy. Experimentally, BaTiO 5 has four phases in
the sequence cubic (C), tetragonal (7'), orthorhombic (O),
and rhombohedral (R) with decreasing temperature. Qur
classical simulations correctly reproduce this transition se-
quence, and give transition temperatures that are in reason-
able agreement with (~ 15-30% below) the experimental
ones. We have argued previously that the quantitative dis-
crepancy can probably be traced to the LDA lattice-constant

TABLE 1. The effect of quantum fluctuations on the FE transi-
tion temperatures in BaTiO,, for a 12X 12X 12 supercell. R, O, T,
and C indicate rhombohedral, orthorhombic, tetragonal, and cubic
phases, respectively.

Phase Classical Quantum Expt.
O—R 200+ 10 150 = 10 183
T-0 232+ 2 1955 278
c-T 296* 1 265 £ 5 403
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error.'%!1 Here, we find that, with quantum effects included,
the calculated transition sequence is still the same, while the
transition temperatures are reduced further by 35 to 50 K.
Although the absolute transition temperatures are thus in
slightly worse agreement with experiment, the spacing be-
tween phases is more reasonable. In any case, it is clear that
the quantum effects can have a substantial effect on the FE
transition temperatures even up to several hundreds of de-
grees K, a result which was not obvious from the outset.

It may appear counterintuitive that quantum effects on the
FE instability are much stronger than on the AFD instability
in SrTiO;. After all, the AFD instability involves only the
motion of oxygen atoms, while the FE instability involves
mainly Ti atoms which are three times heavier than the oxy-
gen atoms. A partial explanation can be drawn from the fact
that the structural change involved in the FE distortion (0.1
a.u. for Ti in SrTiO;) is much smaller than for the AFD
distortion (0.3 a.u. for O). As a result, mAg? turns out to be
three times larger for the AFD case, even though the effec-
tive mass is smaller. Thus, according to Eq. (1), the effect of
the quantum fluctuations will be less significant for the AFD
case.

We think a more fundamental explanation may be found
in the stronger spatial correlations between AFD distortions.
In the cubic phase, the spatial correlations for the FE local
vectors are chainlike or quasi-one-dimensional (1D): f,(R;)
correlates strongly only with f (R;*naz), where n is a
small integer number and a is the lattice constant.”!3 This
correlation is due to the strong Coulomb interactions be-
tween FE local modes,?! which strongly suppress longitudi-
nal excitations relative to transverse ones. With the correla-
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tion length estimated at 10a,'? we can roughly say that about
ten local-mode vectors are ‘‘bound together” and the effec-
tive mass becomes ten times larger. On the other hand, the
AFD modes, associated with rotation of the oxygen octahe-
dral, correlate strongly with each other because of the rigid-
ity of the octahedral unit. The correlation region is 2D disc-
like: a,(R;) correlates strongly with a,(R;*naXx+may),
where m is again a small integer. The AFD correlation length
is comparable with the FE one,13 but now the 2D nature
implies that roughly 100 mode vectors are tied together, for a
mass enhancement of 100 instead of just 10. Thus, this effect
weakens the cuantum fluctuations much more for the AFD
than for the FE case, and one should generally expect quan-
tum suppression of phase transitions to be stronger in the FE
case.

In summary, we have applied the PI technique to study the
effect of quantum fluctuations on FE and AFD phase transi-
tions in SrTiO 4 and BaTiO 4. We find that the quantum fluc-
tuations have a weaker effect on the AFD transition than on
the FE one, because the AFD modes are more strongly cor-
related with each other. In the case of SrTiO;, we find that
the FE phase is suppressed entirely, thereby supporting the
notion of “quantum paraelectric” behavior (though not nec-
essarily a distinct phase) at very low temperature. The AFD
transition temperature is found to be only slightly reduced.
For BaTiO,, we find that the quantum effects preserve the
transition sequence and reduce the transition temperatures
modestly.

This work was supported by ONR Grant No. N00014-91-
J-1184.
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A first-principles study of the vibrational modes of PbTiO5 in the ferroelectric tetragonal phase has been
performed at all the main symmetry points of the Brillouin zone (BZ). The calculations use the local-density
approximation and ultrasoft pseudopotentials with a plane-wave basis, and reproduce well the available ex-
perimental information on the modes at the ' point, including the LO-TO splittings. The work was motivated
in part by a previously reported transition to an orthorhombic phase at low temperatures [(J. Kobayashi, Y.
Uesu, and Y. Sakemi, Phys. Rev. B 28, 3866 (1983).] We show that a linear coupling of orthorhombic strain
to one of the modes at I' plays a role in the discussion of the possibility of this phase transition. However, no
mechanical instabilities (soft modes) are found, either at T or at any of the other high-symmetry points of the

BZ. [S0163-1829(96)04529-8]

I. INTRODUCTION

Due to their relatively simple structure and the variety of
phenomena they exhibit, the perovskite oxides have become
important subjects of study. Despite sharing a common for-
mula ABO; and a highly symmetric high-temperature struc-
ture (Fig. 1), this family of compounds presents a rich and
varied low-temperature phenomenology. Among the perovs-
kites one finds ferroelectric crystals such as BaTiO; and
PbTiO3, antiferroelectrics such as PbZrO,; and NaNbO3;,
and materials such as SrTiO; that exhibit other, nonpolar
instabilities.

Much progress has been made in the last 50 years in the
experimental characterization of the properties of these com-
pounds. One of the main conclusions to emerge from these
studies is the fascinating dependence of the structural and
dynamical behavior on details of chemical composition. In-
deed, even within a given subgroup of materials one finds
significantly different phase diagrams. For example,
BaTiO; exhibits a complicated sequence of phase transi-
tions, from cubic to tetragonal to orthorhombic to rhombo-
hedral, while PbTiO; shows just one clearly established
transition with 7,=493°C from the cubic paraelectric phase
to a tetragonal ferroelectric structure. Moreover, the replace-
ment of Pb for Ba also has important consequences for the
dynamical processes leading to the transition. It is acknowl-
edged that the soft mode in BaTiO; is highly overdamped,
and therefore that the transition has some order-disorder fla-
vor, whereas PbTiO; has been called a ‘‘textbook example
of displacive transition.”’

Until recently, however, theoretical models of perovskite
properties could not properly take into account the fine
chemical details that distinguish the behavior of the different
materials in this family. Semi-empirical methods are not ac-
curate enough to model the sort of delicate balance between
effects (long-range dipole interactions vs short-range cova-
lent and repulsion forces, for example), and schemes based
on model Hamiltonians are usually too simple and too fo-
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cused on a given material to be of much use in the unravel-
ing of the chemical trends within the perovskites.

This situation has improved in the last few years with the
use of accurate first-principles densuy functlonal calcula-
tions to study the energy surfaces and even the
temperature-dependent phase diagrams®™ 7 of various perov-
skite oxides. These works have achieved a high degree of
success in reproducing qualitatively and even quantitatively
the experimental observations, giving us confidence that one
can now carry out accurate calculations to elucidate micro-
scopic behavior (importance of hybridization, competition
between long-range and short-range interactions, etc). A

@/@

H

I

FIG. 1. Structure of ferroelectric (tetragonal) PbTiO;. The ar-
rows represent the displacements of the atoms with respect to their
positions in the cubic high-temperature phase. Pb atoms are de-
picted by open circles, the Ti atom by the black dot in the center of
the cell, and the O atoms (O, O,, and O3, displaced from the Ti
atom along x, y, and z, respectively) by shaded circles.
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good example is the recent work of Rabe and Waghmare,7
which has helped revise the conventional wisdom relative to
the behavior of PbTiO;. Indications of a problem with the
simple displacive picture were first seen experimentally in
extended x-ray absorption fine-structure measurements,’® but
the theoretical work’ has provided the microscopic underpin-
nings of a partial order-disorder character of the cubic-
tetragonal transition in which the atomic distortions in the
high-temperature phase are proposed to arise from a local
instability.

Another issue, with which we will be mainly concerned in
this paper, is the possible existence of a low-temperature
transition. In the 1950s, Kobayashi ez al.® reported the obser-
vation of what appeared to be a distorted (‘‘multiple’”) te-
tragonal phase of PbTiO; below approximately —100°C.
After several negative attempts by other researchers to repro-
duce the observations,'® x-ray and optical measurements
were presented!! as corroborating the existence of a low-
temperature phase with an orthorhombic structure. The tran-
sition, at —90°C, would be second order, and bring about a
very slight distortion of the tetragonal phase (with the ortho-
rhombic cell parameters a and b differing by just 4.5
X107*A at —194°C) and the direction of the lattice vec-
tors kept unchanged. The absence of superlattice reflections
would imply a symmetry distortion without multiplication of
the size of the unit cell.

From the point of view of the microscopic dynamics of
the tetragonal structure, such a transition could be explained
by a mechanical instability of a zone-center phonon whose
associated atomic distortions break the tetragonal symmetry
and thus relax the requirement that ¢ and b be equal. At
T=0 the energy surface should then present a saddle point at
the configuration corresponding to the tetragonal phase, with
the energy decreasing along a coordinate representing the
amplitude of the soft mode and the coupled orthorhombic
strain.

In this paper we have used first-principles calculations to
study possible mechanical instabilities in the ferroelectric te-
tragonal phase of PbTiO;. Our focus has been primarily on
homogeneous (zone-center) distortions of the tetragonal
symmetry, aimed at a detailed theoretical assessment of the
possibility of the phase transition suggested by Kobayashi
et al.'! However, in the interest of completeness, we have
also carried out an analysis of the normal modes at all the
main symmetry points on the surface of the Brillouin zone
(BZ). Thus we also present a fairly complete collection of
normal-mode frequencies and eigenvectors for ferroelectric
PbTiO 3 computed from first principles.

The paper is organized as follows. In Sec. II we undertake
a classification of the types of possible distortions of the
tetragonal phase of PbTiO; according to their symmetry.
Section III briefly describes some technical aspects of our
calculations, whose results are presented in Sec. IV. Section
V discusses the implications of our work for the likelihood
of a low-temperature transition in PbTiO ;. The Appendix is
devoted to some issues related to the coupling of atomic
displacements to strain degrees of freedom.

I1. THEORETICAL ANALYSIS OF POSSIBLE
INSTABILITIES

In the harmonic approximation, the calculation of phonon
frequencies and mode displacement patterns involves the di-

TABLE 1. Character table and decomposition of the vector and
second-order symmetric tensor representations for point group
4mm.

E C,,C;' C, mym, mgmy V  Sym[VXV]
A 1 1 1 1 1 z x2+y2,7?
A, 1 1 1 -1 -1
B, 1 -1 1 1 -1 x2-y?
B, 1 -1 1 -1 1 Xy
E 2 0 2 0 0 (x,y) (zx,yz)

agonalization of the dynamical matrix, itself obtained in a
straightforward manner from the force constants @;’}’5 which
enter the expansion of the energy to second order in the
atomic displacements,

E=Eo+ 2 ®Fulul. (1)
ijaB

The force constants can easily be calculated by computing all

the forces caused by a given sublattice displacement.

It is well-known that the normal modes of vibration of a
crystal at a given k point of the BZ transform according to
irreducible representations of the group of the wave vector.
Thus a judicious use of the symmetry information available
simplifies the anatysis and saves computational work. Sym-
metry arguments can also profitably be used to determine the
form of the series expansion of the total energy of the crystal
around a given configuration, including the correct couplings
among various degrees of freedom (such as atomic displace-
ments and strains). This is precisely what is needed for a
detailed study of the energy surface and the possible appear-
ance of mechanical instabilities. .

In this section we present a brief account of the use of
symmetry considerations to characterize the possible insta-
bilities of the tetragonal ferroelectric phase of PbTiO;.
Experimentally,!! it has been claimed that the low-
temperature structure has orthorhombic symmetry and there
is no sign of cell doubling. Accordingly, we devote a sub-
section to the study of zone-center instabilities of orthorhom-
bic character, and to the investigation of the form of the
energy as a function of the relevant degrees of freedom. A
second subsection considers distortions that might conceiv-
ably lead to a low-temperature phase transition but involve a
nonorthorhombic symmetry or a doubling of the unit cell.

A. Orthorhombic instabilities with no cell doubling

The ferroelectric phase of PbTiO5 (Fig. 1) is tetragonal,
with space group P4mm. At the I' point, the group of the
wave vector is the point group of the crystal, 4mm, charac-
terized by a fourfold rotation axis and four symmetry planes
which contain it. Table I displays the character table for
4mm. There are five symmetry classes and thus five irreduc-
ible representations (irreps), of which one (E) is two-
dimensional.

The decomposition of the vibrational representation at I’
can be shown by standard techniques to be

Vib(T)=4A,0B,®5E. )
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TABLE II. Symmetry analysis of the normal modes at different
points of the BZ.

Kk, (Group) Irrep No. of copies Basis
I',Z (4mm)
A, 4 Pb,,Ti,,0,,+0,,,05,
B, 1 012_021
E 5 (2D) Pb, .Ti,,0,,,0,,,0;,
Pb,.Ti,,0,,,0,,,03,
X,M' (mm2)
A, 5 Pb,,Ti,,0,,,0,,,05;
A, 3 Ti, ,0,,.0;,
B, 2 Pb,,0,
BZ 5 Pbx vTiz ’le 902z ’031
M,R (4mm)
A, 2 Pb,,0,,+0,,
A, 1 0,,—0,,
Bl 1 Oly—o?.x
B, 3 Ti;,0,,+0,,,0;,
E 4 (2D) Pb,.Ti,,0,,,03,

Pb,.Ti,,0,,,05,

Physically, this means that the problem of diagonalizing the
15X 15 dynamical matrix reduces to three simpler tasks: the
diagonalization of a 4 X 4 matrix to decouple the four copies
of the A, irrep, a similar 5X5 diagonalization for E, and a
simple calculation of a force constant to obtain the frequency
of the B, mode (its displacement pattern being completely
determined by symmetry). The atomic motions are, there-
fore, coupled only within subspaces of the original 15-
dimensional configuration space. The four-dimensional A,
subspace corresponds to coupled motions with basis [Pb,,
Ti,, O,,+0,,, O3,] and the one-dimensional B, subspace
represents a normal mode with a displacement pattern of the
form [O;,—0,,]. Of course, at [ there are three zero-
frequency acoustic modes. Two are degenerate (movements
along x or y) and transform according to E, and the third is
polarized along z and belongs to A ;. The complete symme-
try specification of all the normal modes at I" and at other
high-symmetry k points appears in Table II."3

It is simple to use this symmetry information to analyze
the possible mechanisms leading to the experimentally sug-
gested phase transition from the tetragonal to an orthorhom-
bic structure. By looking at the I" entry in Table II and con-
sidering the characters in Table I, it can be immediately
concluded that the B; mode has the right transformation
properties. In this mode the O, and O, atoms move in op-
posite directions along the z axis, thus breaking the fourfold
symmetry.

A calculation of the frequency of this mode is not enough
to determine the existence of an instability, since one should
take into account possible couplings of the atomic displace-
ments to changes in the size and shape of the unit cell (strain
variables). The possible strains that can be applied to the cell
are represented by the components of a second-order sym-
metric tensor (77), and can be classified according to irreduc-
ible representations of the point group of the crystal as
shown in the last column in Table I. In what follows we use
the notation

r= 7722 ’
5= (et 7y,)12,

1= (M~ ”yy)/z-

Portions of % transforming according to the identity repre-
sentation A | leave the tetragonal symmetry unchanged. Such
is the case for r and s, which refer to symmetric axial and
in-plane strains, respectively. The other strain irreps are as-
sociated with lower lattice symmetries: monoclinic for E,
and orthorhombic for B, and B,. While a B, (7,,) distor-
tion leads to an orthorhombic structure with axes rotated by
45° with respect to the tetragonal basis, a pure B, (f) strain
transforms the cell into an orthorhombic one without a
change in the orientation of the axes. The latter is precisely
the kind of low-temperature phase suggested for PbTiO;."!
Apart from the change in the orientation of the axes, there
is an important difference between B, (7,,) and B, (1) cell
distortions. Since the orthorhombic strain ¢ transforms’ac-
cording to the B, irrep, it can couple linearly to the B,
normal coordinate.'* Therefore, the crystal energy expansion
considering only the B, mode and strain is of the form

E=Eg+ Y ku®+ Y Ct*+ yut+ - - . (3)

It is shown in the Appendix that the linear coupling in Eq.
(3) implies a renormalization C4=C—y?*/k. Thus strain
coupling could create instabilities against B, (orthorhombic)
distortions even if the ‘‘bare’’ second-order coefficients k
and C are positive.

In contrast, any coupling of the B, strain to a given
atomic displacement # must be at least of second order,

E=Eo+ Y ku?+ 5 Cply+ + yulml o+ B+ - -,

)

with no renormalization of the elastic constant C (see the
Appendix).

In summary, if the purported low-temperature phase tran-
sition in PbTiO; is indeed to an orthorhombic phase with no
cell doubling, and with the basis parallel to the tetragonal
one, it should be linked to a negative effective elastic con-
stant C.g for a ¢ strain. If one allows for the possibility of a
rotation of the axes, the transition could be associated with a
negative ‘‘bare’’ elastic constant for a B, strain.

B. Other instabilities

Apart from the experimentally suggested instability of the
tetragonal phase in favor of an orthorhombic structure with
no cell doubling, there are, in principle, other distortions that
might conceivably lead to phase transitions. To begin with,
and by reference to Table I, one could think of an instability
leading to a phase with monoclinic symmetry (but still with-
out multiplying the size of the unit cell) associated with dis-
tortions transforming according to the E irreducible repre-
sentation. The analysis of this case is conceptually very
similar to the one carried out for the B, distortions, with the
difference that there are eight optical £ modes capable of
coupling to strain (four for each of the rows of the two-
dimensional irrep E). Thus x- and y-polarized normal modes
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FIG. 2. Sketch showing the irreducible wedge of the Brillouin
zone associated with the P4mm space group, and the positions of
the symmetry points considered in this work.

will couple linearly to xz and yz strains, respectively, result-
ing in a renormalized elastic constant C g for E distortions.

Next to consider is the possibility of structural phase tran-
sitions associated with a multiplication of the size of the unit
cell. These would come about through the instability of non-
I" modes. Since there is no possibility of coupling of these
modes to homogeneous strain at first order, one needs only to
compute the eigenvalues of the force-constant matrix to
check for any saddle points in the energy surface. It is not
feasible to study the modes at all the wave vectors in the BZ,
so we focus on a few high-symmetry k-points on the zone
surface (see Fig. 2) which represent cell-doubling distortions.

The symmetry analysis of zone-boundary modes proceeds
along the same lines as those for I'. Operations that leave the
wave vector invariant will, in general, form subgroups of
4mm. For the purposes of our work it suffices to consider
just one more point group, mm?2, whose character table is
given in Table IIL'?> We show the symmetry decomposition
of atomic displacements at the zone-boundary points in
Table II.

II1. DETAILS OF CALCULATIONS

The determination of the force constants involves the con-
sideration of appropriately distorted crystal configurations.
Symmetry arguments are used to reduce to the minimum the
number of different calculations that need to be carried out,
and to obtain the relevant information in the most direct
form. For z-polarized modes at the I' point, for example, it is
only necessary to consider the four linearly independent
atomic distortions (1,0,0,0,0), (0,1,0,0,0), (0,0,1,—1,0)/
\/f, and (0,0,1,1,— 2)/\/6, where the basis is formed by unit

TABLE III. Character table for the point group mm?2. The sym-
bols m, ,m, stand for m,, m, or m,, my, depending on the ori-
entation of the axes.

E C, m, m

1 1 1
1 -1 -1
-1 1 -1
-1 -1 1
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z displacements of Pb, Ti, O, O, and Oj.

Strain parameters are determined by subjecting the crystal
to pure strains and fitting the energy to a polynomial form.
The strain-phonon couplings are computed by finding the
forces on the atoms caused by a suitable strain, since, from

Eq. (3),
(ﬁ) =yr. (5)
du u=0

We use ultrasoft pseudopotentials, a plane-wave basis set,
and a conjugate-gradients algorithm to compute total ener-
gies and forces for a variety of crystal configurations. The
method and the details of the pseudopotentials employed
have been described elsewhere.* For this work we find that a
(4,4,4) Monkhorst-Pack'> sampling of the BZ is enough to
provide good precision in the calculated coefficients (see
next section). Force constanis are computed using the
Hellmann-Feynman theorem, with atomic displacements of
0.002 in lattice units.

A final methodological note concerns the calculation of
the frequencies of longitudinal optic (LO) modes at the I’
point. Since our calculations use periodic boundary condi-
tions, we are not able to introduce a macroscopic electric
field, such as it would arise in an ionic crystal in the presence
of a g— 0 longitudinal vibration. This field creates a splitting
of the frequencies of infrared-active phonons, with the cou-
pling constants being the ionic effective charges Z*. The
force-constant matrix has to be augmented by the effect of a
screened (by electronic effects only) Coulomb interaction
among those effective charges,

4W€2Z*Z* 6
Q €. i~y ( )
The effective charges can be obtained from first-principles
calculations. Here we use those computed for cubic
PbTiO; by Zhong and Vanderbilt.'®

¢$H¢$+

IV. RESULTS

A first concern is the determination of the structural pa-
rameters of the ferroelectric tetragonal phase of PbTiO;.
First-principles LDA calculations typically underestimate the
lattice constants of perovskite oxides by around 1%. Our
final objective is the study of dynamical properties of the
crystal, and it would be debatable whether it is better to
compute phonon frequencies and other dynamical param-
eters at the experimental or at the theoretical lattice constant.
Past experience with perovskites has shown that the dis-
placement patterns associated with some soft modes, and
even the existence of the latter, depend on lattice constant
and strain.>’ In the case of ferroelectric PbTiO; there is an
additional complication, namely the existence of internai
atomic displacements, which are of course coupled to the
cell dimensions. Our first strategy was to use the experimen-
tal lattice constants a =7.380 a.u., ¢/a=1.0635 and optimize
the internal atomic positions to obtain a base reference con-
figuration with zero forces with which to compute phonon
frequencies and strain coefficients. We call this *“Theory 1.”’
Later we determined an optimized structure (cell shape and
atomic positions coupled) via a special minimization proce-
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TABLE 1V. Structural parameters of PbTiO5. Theory I and II
refer to a relaxation with constrained lattice constants, and a free
relaxation, respectively. z atomic coordinates are given in lattice
units. Experimental values are taken from Ref. 21.

TABLE VI. Computed frequencies of zone-edge phonons, clas-
sified by symmetry label. The base structure used in the calculations
is Theory I of Table IV. Experimental values are given when avail-
able (Ref. 19).

Theory 1 Theory 11 Experiment k Irrep Frequencies (cm ') Expt.
a (au) 7.380 7.298 7.380 Z Aj 102, 189, 447, 831
cla 1.063 1.054 1.063 B, 292
z(Ti) 0.549 0.537 0.540 E (2) 46, 151, 184, 270, 454 59, 168
281 02) 8‘?22 g‘?(l)(l) g‘?g X A, 66, 237, 285, 309, 486 7
@0y : ‘ : A, 131, 233, 426
B, 54, 321
dure (see the Appendix); we call this ‘“Theory II.”” Table IV B 99. 177, 337, 608, 672
summarizes the structural information. While, as we shall M Ay 74, 452
see, we obtain substantially the same phonon frequencies in A, 412
either case, the second approach, using as a reference the B, 138
structure which gives a theoretical energy minimum with B, 247, 635, 716
respect to strain, is, in principle, more appropriate for the E (2) 57, 203, 294, 398
calculation of elastic properties and strain-phonon couplings.
As part of the investigation of the possible mechanical ~ M’ A, 67, 110, 272, 406, 415
instabilities,'” we have obtained a complete set of calculated A, 152, 270, 401
phonon frequencies for PbTiO 5. These are given, along with B, 57, 329
experimental results when available, in Tables V and VL8 B, 58, 188, 312, 579, 794
The agreement of our theoretical results with experiment for R A 90. 411
the zone-center modes (both TO and LO) is quite good. We T ’
are thus confident that our computational approach can be Az 401
trusted in its predictions of zone-edge vibrational frequencies B, 135
that have not yet been determined experimentally. To our B, 200, 626, 803
E (2) 65, 136, 322, 386

knowledge, the only other calculation of vibrational frequen-
cies and modes for tetragonal PbTiO; was carried out by
Freire and Katiyar."” An important difference with our work
is that those authors used an empirical fitting procedure to
adjust the parameters of a rigid-ion model. We use no em-
pirical parameters of any kind, just the atomic numbers and
masses of the atoms involved. Table V can be used also to

TABLE V. Frequencies of optical modes at T' in cm™'.

Infrared-active modes exhibit LO-TO splitting. See text and Table
1V for the meaning of Theory I and Theory II. Experimental values
as compiled in Ref. 19.

Theory 1 Theory 11 Experiment
A(TO) 151 146 147
A (TO) 355 337 359
A |(TO) 645 623 646
E(TO) 81 82 88
E(TO) 183 195 220
E(TO) 268 237 289
E(TO) 464 501 505
B, 285 280 289
A (LO) 187 186 189
A (LO) 449 447 465
A(LO) 826 799 796
E(LO) 114 125 128
E(LO) 267 273 289
E(LO) 435 418 436
E(LO) 625 675 723

estimate the degree of dependence of the phonon frequencies
upon the details of the base structure used in the calculations
(““Theory I'’ or ‘‘Theory II"’ above). Phonons at zone-
boundary points are computed using the ‘“Theory I'” struc-
ture.

To test the convergence of our results with respect to the
density of the k-point grid for BZ integrations, we recom-
puted the frequencies of z-polarized I' modes using a (6,6,6)
Monkhorst-Pack grid. The results, displayed in Table VII,
indicate a high level of convergence.

As for the question of the existence of a phase transition
at low temperature, we find that all the vibrational frequen-
cies are real, as can be seen from the positive sign of all the
moie force constants k. Thus there are no mechanical insta-
bilities in the ‘‘bare’’ vibrational degrees of freedom, either
at I' or at the edges of the BZ. However, there still remains

TABLE VII. Test of the convergence of mode frequencies with
k-point grid. (4,4,4) and (6,6,6) grids are used for the ““Theory I'’
choice of Table IV. The frequencies (in cm ') are those of the
transverse z-polarized modes at T'.

k-point grid (4.4,4) (6,6,6)
A,(TO) 151 153
B, 285 289
A,(TO) 355 359

A,(TO) 645 648
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FIG. 3. Upper panel: Change in crystal energy (per cell) as a
function of the orthorhombicity parameter ¢ (B, strain). The curve
is a fit to a parabola. Lower panel: Derivative of the crystal energy
with respect to the B, normal mode amplitude at zero amplitude, as
a function of B, strain. According to Eq. (5), it measures the degree
of coupling between the normal mode and the strain.

the question of whether the linear coupling to strain degrees
of freedom could result in any instability.

We deal first with the renormalization of the elastic con-
stant corresponding to a B orthorhombic strain. By applying
pure B strains of different magnitudes (for which we set
b—a+#0 while keeping the sum a + & constant) and comput-
ing the resulting values of the total energy, we obtain the
data plotted in Fig. 3. A fit to a simple parabola is very good
up to sizable strains. The elastic constant C [see Eq. (3)]
turns out to be 5.0 hartree.”” As mentioned above, we use the
optimized structure (‘‘Theory II"’) for this and the rest of the
calculations involving elastic constants and strain-phonon
couplings.

From the same set of calculations, but extracting this time
the forces on the atoms and taking the scalar product (in
configuration space) with the eigenvector of the B; mode, we
obtain from Eq. (5) (see also Fig. 3) y=0.15 hartree/bohr.
The force constant for the B, mode is 0.048 hartree/bohr?,
so the renormalized C is C 4= 4.5 hartree. We see that even
though there is a 10% change in the value of the elastic
constant, the renormalization due to the coupling to the
phonons is not enough to cause a B instability of the tetrag-
onal cell.

We performed a similar set of calculations for the analysis
of the monoclinic distortion with E symmetry. The forces
along the x axis appearing upon application of an 7, strain
translated into coupling constants of 0.17, 0.05, 0.06, and
0.00 hartree for the optical x-polarized £ modes of respec-
tive force constants 0.014, 0.042, 0.077, and 0.155 hartree/
bohr?. The bare elastic constant for 7., strain is 5.4 hartree.
Adding up the contributions to the renormalization from the
four modes we obtained an effective elastic constant C,g of
3.3 hartree. In this case the renormalization amounts to 40%
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of the bare value, but still is not enough to drive an E insta-
bility.

As discussed above, there is no linear coupling of B,
orthorhombic strains to atomic displacements. The calculated
elastic constant for this type of strain is positive (6.0 hartree),
so there should be no instabilities of B, symmetry either.

Finally, recall that there is no first-order coupling of zone-
boundary modes to homogeneous strain. Thus we need only
check the bare force constants, which are all found to be
positive (see Table VI). This means that we do not expect
any mechanical instabilities associated with a cell doubling.

V. CONCLUSIONS

The low-temperature transition proposed by Kobayashi
et al.'' on the basis of x-ray and optical measurements is
supposed to involve a slight orthorhombic distortion of the
tetragonal phase, maintaining the orientation of the cell axes
with no cell doubling. Our analysis of the energetics of B,
distortions shows that a low-temperature transition of this
kind is possible, in principle, but not likely in ferroelectric
PbTiO5. In this connection, it should be noted that, to our
knowledge, the experimental observations of Ref. 11 have
not been reproduced since 1983.

We also checked more generally for other kinds of low-
temperature structural transitions. However, we find that all
unit-cell-preserving distortions exhibit positive elastic con-
stants, thus apparently ruling out transitions to a monoclinic
structure (E distortions) or to a 45°-rotated orthorhombic
structure (B, strain). Furthermore, we show that there are no
mechanical instabilities associated with zone-boundary nor-
mal modes that could cause a phase transition with cell dou-
bling.

Since we have not exhaustively explored the vibrational
spectrum of the crystal, it is conceivable that a mechanical
instability at a k& point not on the BZ boundary may have
been missed. However, our work shows fairly clearly that a
simple transition is not likely in ferroelectric PbTiO4 at low
temperatures.

Note added in proof. After this paper had been submitted
for publication, we learned of a set of high-resolution x-ray
and neutron diffraction experiments on powder PbTiO,
samples which appear to indicate that PbTiO; remains tetrag-
onal down to 10 K [J. M. Kiat (private communication)].
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APPENDIX
1. Renormalization of energy-surface coefficients

We show first how the linear coupling of u to ¢ in the
energy expansion of Eq. (3) implies a renormalization of C
(or, equivalently, of k). After a transformation of the qua-
dratic form to ‘‘principal axes’’ by a linear change of vari-
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ables, the first partial derivatives of the energy will be zero.
We can achieve the transformation implicitly by setting the
derivative of E with respect to # to zero, and solving for
u, to get u=—yt/k. When this .condition is inserted back
into Eq. (3), we obtain an expression for E as a function of
the free variable ¢,

1 2 ]
E(t)= 5(C~ y_) 12==Cgt?, (A1)

k 2
from which it follows that the effective elastic constant is
C.=C— v*/k. (If instead u is chosen as a free variable, one
obtains a renormalized spring constant k.= k — y*/C. How-
ever, the physical mode frequency is not renormalized, be-
cause of the ‘‘infinite mass’’ associated with the strain de-
grees of freedom.)

In the case of the B, distortion with quadratic coupling,
Eq. (4), one needs 8>0 and @>0 or else there would be
unphysical divergences to —o° in the energy. But then, set-
ting the u derivative of the energy to zero, one gets either
u=0 (trivial) or u?=— (k+27yt?)/4a (meaningless since u
would be imaginary). Thus there is no renormalization of the
elastic constant.

2. Optimization of structural parameters

Using the symmetry constraints of the 4mm point group,
one can write down the expression (to second order in the
strain and atomic displacements) for the energy of a general
tetragonal phase of that symmetry as

E= EO + Estrain+ Eimemal+ Estrain—ph ’ (A2)

where

Eqain= 15+ Bir+ ays?+ Bor’+ Ssr (A3)
is the part that depends only on the s and r strains,
3
EinlemaI: 2] If kiu? (A4)
=

is the change in energy due to internal atomic displacements
compatible with the symmetry (and thus expanded as com-
binations of the three A; phonons polarized along the z axis),
and

3

Escingn™ 2 (Yi,5+ Yjuir) (AS)
are the symmetry-allowed couplings of s and r to the A,
phonons (both s and r transform according to A).

The 14 coefficients in this expansion are easily computed
for a given base configuration. In our case, the starting point
is a tetragonal cell with g and ¢ given by experiment and the
internal atomic positions along the z axis optimized theoreti-
cally to eliminate residual forces (column labeled ‘‘Theory
I’ in Table IV). Computed A, phonon frequencies directly
give the force constants k;, and the strain and strain-
coupling coefficients are obtained in a manner analogous to
that described in the main body of the paper. Once the qua-
dratic form for E is known, it is a simple matter to find the
structural parameters which correspond to the minimum en-
ergy (column labeled ‘“Theory II’” in Table IV). As is typical
of first-principles calculations, the calculated iattice param-
eters are smaller than the experimental values by around
1%.
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We present a first-principles study of 180° ferroelectric domain walls in tetragonal barium titanat>. The
theory is based on an effective Hamiltonian that has previously been determined from first-principles ultrasoft-
pseudopotential calculations. Statistical properties are investigated using Monte Carlo simulations. We com-
pute the domain-wall energy, free energy, and thickness, analyze the behavior of the ferroelectric order param-
eter in the interior of the domain wall, and study its spatial fluctuations. An abrupt reversal of the polarization
is found, unlike the gradual rotation typical of the ferromagnetic case.

The cubic perovskites are among the most important ex-
amples of ferroelectric materials.! Many undergo not just
one, but a series, of structural phase transitions as the tem-
perature is reduced. These transitions occur as a result of a
delicate balance between long-range dipole-dipole interac-
tions that favor the ferroelectric state, and short-range forces
that favor the high-symmetry cubic perovskite phase. Be-
cause of the anomalously large Born effective charge of the
atoms, the ferroelectric transitions in the perovskites are very
sensitive to electrostatic boundary conditions.>® As a conse-
quence, domain structure plays an important role in the
ferroelectric transitions, and a theoretical understanding of
the domain walls is of great interest.

Theoretical investigation of ferroelectric domain walls has
been much less extensive than for their ferromagnetic coun-
terparts. The strong coupling of ferroelectricity to structural
and elastic properties is problematic. Previous theoretical in-
vestigations have concentrated on a phenomenological level
of description, using Landau theory to study domain-wall
thickness and energy.*> Simple microscopic models such as
local-field theory have also been used to identify the domain-
wall structure and character.® Due to the limited experimental
data available, this empirical work has tended to be qualita-
tive and oversimplified and has thus not been able to offer
the accuracy needed for a deeper theoretical understanding.

In this paper, we undertake a first-principles study of
ferroelectric domain walls in BaTiO ;. While several ab ini-
tio studies of bulk BaTiO; and related materials have ap-
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peared in the literature,”® to our knowledge the present work
is the first such study of the domain walls. Using an ab initio
effective Hamiltonian developed previously to study the
phase transitions of BaTiO;,” we set up Monte Carlo (MC)
simulations to investigate the structure and energetics of
180° domain walls of (100) orientation. In particular, the
energy, free energy, and thickness of the wall are calculated.
We also analyze the behavior of the ferroelectric order pa-
rameter in the interior of the domain wall and study the fluc-
tuations in the domain-wall shape. Where we can compare
with previous work, we find our results in general agreement
with experimentalm‘12 and theoretical reports.

Because only low-energy distortions are important to the
structural properties, we work with an effective Hamiltonian
written in terms of a reduced number of degrees of freedom.”
The most important degrees of freedom included are the
3N “local-mode amplitudes™ u;, for site i and Cartesian
direction . A “site” is a primitive unit cell centered on a Ti
atom, and the “local mode” on this site consists of displace-
ments of the given Ti atom, its six nearest oxygen neighbors,
and its eight nearest Ba neighbors, in such a way that a
superposition of a uniform set of local-mode vectors u;=e
(independent of i) generates the soft zone-center ferroelec-
tric mode polarized along ¢. We also include six degrees of
freedom to represent homogeneous strain of the entire sys-
tem and 3N displacement local-mode amplitudes v;, that
serve to introduce inhomogeneous strains. We thus reduce

R5969 © 1996 The American Physical Society
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-5 of freedom per unit cell from 15 to 6,
sarsion considerably.

Sy e <ociectric transition involves only small
tuctute Geouons we represent the energy surface by a
fayvaar ensatisoon armund the high-symmetry cubic perovskite
ALrictute, etedieye up to fourth-order anharmonic terms
The energy consists of five parts: an on-
e docabanad s weil-energy, a dipole-dipole interaction, a
atoiichion between local modes, an elastic en-
covipang between the elastic deformations and
e tocw sodos The Hamiltonian is then specified by a set
ai expatisior parimeiers, which are determined using highly

Apcre apprennaic

,
SOt Tabae

oy, and

Lecurate Gocal density approximation (LDA)  calculations
sith Vanderbit uitrasoft psendopotentials.'® The details of
she Hamtonian. the first-principles calculations, and the val-

ex el e exransion  parameters have been reported
clsewhere.” This scheme has been successfully applied to
single-domain BaTiO4 to predict the phase-transition se-
gquenee. transition emperatures, and other thermodynamic
propertics with zood accuracy.

The phase-transition sequence for BaTiO 5 is cubic to te-
ragonal to orthorhombic to thombohedral as temperature is
srduced. We focus on the tetragonal phase, since it is the
room-temperature phase, and the best studied experimentally.
We adopt the convention that the polarization, and thus the
tetragonal ¢ inis. are along z. In this phase, two kinds of
domain walls. 907 and 180°, are possible. The notation
refers to the angle between polarization vectors in adjacent
domains. We choose the 180° domain wall for this study
because of preliminary indications of a simple structure and
narrow width." Because it is energetically unfavorable to
form domain walls carrying net bound charge, 180° domain
walls are restricted to lie parallel to the polarization. Earlier
work has indicated that the 180° domain wall of (100) ori-
entation has much lower energy than for other, e.g., (110),
orientations.” Thus, we focus on the (100) domain wall,
which we take to lie in the y-z plane.

{deally. we would like to study a single 180° domain wall
in isolation. In order to make the simulation tractable, we
apply artificial periodic boundary conditions. (While a study
of a finite sample would also be interesting, the presence of
surfaces would greatly complicate the analysis.) We use a
4L X L XL supercell (typically L=10) containing up and
down domains alternating in the x direction. Thus, there are
two 180° domain walls per supercell, with a spacing between
walls of about 20 lattice constants. We find that this separa-
tion is more than enough to give converged results, based on
tests of convergence with respect to L. In fact, previous work
has indicated that the width of the 180° domain wall is very
narrow, of the same order of magnitude as the lattice
constant.™*!” Thus, in retrospect this should not be surpris-
ing.

For a very narrow domain wall, our choice of local mode
(Ti centered as opposed to Ba centered) may introduce some
bias. The point is that the sharpest domain wall that can be
constructed is one for which the local-mode vectors w; are
constant except for a sudden sign reversal from one plane of
sites to the next. For the Ti centered choice of local modes,
this represents a Ba-centered domain wall, for which the
atomic displacements have odd symmetry across (and vanish
on) the central Ba plane. Conversely, for a Ba-centered

choice of local mode, the sharpest domain wall is Ti cen-
tered, vanishing on a central plane of Ti atoms. In order to
determine which of these scenarios is the more realistic, we
constructed 4 X 1X 1 supercells (containing 20 atoms and 2
domain walls) corresponding to each of the above scenarios,
using a mode amplitude taken from the average equilibrium
structure of the MC simulations (very close to the experi-
mental structure). We then performed LDA calculations to
compare the energies of the two structures. We find the Ba-
centered and Ti-centered walls constructed in this way have
energies of 6.2 and 62.0 erg/cm?, respectively. Thus, a sharp
Ti-centered domain wall appears very unfavorable and it is
clearly best to use a Ti-centered local mode as we have done.
We note that the effective Hamiltonian reproduces the energy
of this sharpest Ti-centered wall to within 1% of the LDA
result (not surprisingly, since configurations of a similar kind
were included in the fitting’).

We study the structure and energetics of the domain walls
using Metropolis MC simulations.”> The degrees of freedom
are the vectors u; and v; for each site i of the 4LXLXL
supercell, and the six homogeneous strain components. As
mentioned above, the supercell is arranged to contain two
domains, each roughly of size 2L X LX L, with domain walls
normal to X and with periodic boundary conditions. Since all
energy contributions (except for the dipole-dipole coupling)
are local, we choose the single-flip MC algorithm. We make
a trial move of variables at one site, check acceptance, make
the change if accepted, and go on to the next site. One Monte
Carlo sweep (MCS) constitutes one entire pass through the
system in this manner.

To generate a reasonable starting configuration for the
4L X LXL supercell, we equilibrate an L X L X L supercell at
a high temperature (7>400 K) in the cubic phase and then
cool it down slowly, allowing it to relax for 20 000 MCS’s at
each temperature step. We stop the cooling when the tetrag-
onal phase is reached, in which the polarization vector aver-
aged over the simulation cell points along one Cartesian axis.
(As reported in Ref. 7, this phase corresponds to the tempera-
ture range from 230-290 K in our calculation, while the
actual experimental range is 278-403 K.') If the polariza-
tion is not along +Z, we rotate the structure to make it so.
We then copy the structure four times along the x axis, with
the polarization reversed to —z for two of them. The starting
configuration thus contains two periodic 180° domain walls
perpendicular to the (100) direction.

This structure is initially equilibrated for 2000 MCS’s, in
order to reach a good approximation to the “local equilib-
rium” associated with the presence of alternating domains.
Thermodynamic averages are then constructed from runs of
40 000 MCS’s. Of course the global equilibrium for our su-
percell would consist of a single-domain (bulk) structure;
indeed, we find that fluctuations in the positions of the do-
main walls can occasionally cause two neighboring walls to
touch, which leads rapidly to the mutual annihilation of the
pair of walls. While this occurrence is fairly rare, we never-
theless decided to prevent it by fixing the z components of
the u vectors in the central two layers in each domain during
the simulations, thus providing “barriers” to the motion of
the domain walls. Since the domain walls are typically far
from these barriers and the constrained structure is very close
to the bulk equilibrium, we think the effect on our results is



Iy SRR

53 FIRST-PRINCIPLES INVESTIGATION OF 180° DOMAIN ...

FIG. 1. Snapshot of the y-z layer-averaged polarization-vector
components i, (dotted line), i, (dashed line), and i, (solid line), as
a function of x/a (a is the lattice constant), for the 40X 10X 10
lattice at 260 K.

negligible. Indeed, results taken from entirely unconstrained
runs in which no annihilation event occurs appear very simi-
lar to those given below.

Figure 1 shows a snapshot of the polarization vector com-
ponents averaged over y-z layers, u,, u,, and #,, as a func-
tion of x, for L=10. Several qualitative features are imme-
diately apparent. First, the sharp reversal of u, indicates that
the domain boundary is indeed very sharp, its width being on
the order of a lattice constant. Second, the other components
u, and u, remain small throughout the whole supercell and
their random fluctuations do not appear to be correlated with
the domain-wall position. (The qualitative difference be-
tween the fluctuations of i, and u, with x is an artifact of the
averaging and of the presence of strong longitudinal
correlations.!”) Thus, we find that the domain boundary en-
tails a simple reversal, rather than a rotation, of the ferro-
electric order parameter.

These behaviors are to be contrasted with the case of fer-
romagnetic domain walls, where the magnetization vector
typically rotates gradually (on the atomic scale), keeping a
roughly constant magnitude. This difference in behavior can
probably be attributed largely to the much stronger strain
coupling in the ferroelectric case. For our BaTiO ; geometry,
for example, the entire sample, including the interface, de-
velops a tetragonal strain along Z, imposed by the presence
of domains polarized along *Z. This gives rise to a strong
anisotropy which will tend to keep the ferroelectric order
parameter from developing components along x or y in the
interface region. Thus, instead of rotating, the polarization
simply decreases in magnitude and reverses as we pass
through the domain wall. This absence of rotation of the
polarization has been experimentally verified for the case of
the 90° domain wall in BaTiO."®

We now turn to a quantitative analysis of our simulation
results, focusing on the domain-wall width, smoothness, and
energy. We first estimate the domain-wall thickness ¢ as fol-
lows. For a string of sites along x at a given value of (y,z)
and on a given MCS, we identify the pair of sites between
which u, changes sign. We then define ¢ via the linear ex-
trapolation t/a=2u"""/Au,, where a is the lattice constant,
uP™ is the spontaneous polarization deep in a domain, and
Au, is the change of u, between the two interface sites.
Finally, we average over (y,z) points and over MCS’s to get
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FIG. 2. Histograms of domain-wall positions or o the
40X 10X 10 lattice at 260 K. Solid line, histogram ot Xt - 7)/y
values (a is the lattice constant, 7 labels a MC5): dashed b
histogram of y-z planar-average values Xi(rvu

an average value of 7. The value of ¢ estimated in this way
1.4 unit cells, or 5.6 A. This is in reasonable agreement with
empirical theoretical estimates of 6.7 A (Ref. 5y and experi
ments which place an estimated upper bound of 50 A"

To analyze the smoothness of the domain wall. we Fourier
transform the polarization u, as a function of the v coordi-
nate for each (y,z) point and retain only the first three terms
in the expansion. This is an effective way to smooth the data
while keeping the most useful information. The positions of
the two domain walls in the supercell, denoted by X and
X,, are identified with the values of x at which the Fouricr-
smoothed u, changes sign. In this way we obtain
X,(y,z,7) and X,(y,z,7), where 7 labels the MCS.

In Fig. 2, we show the probability distribution of X for
L=10 and for a run of 40 000 MCS’s at 260 K. The solid
line is a histogram of the values of X,(y.z.7). while the
dashed line is a histogram of y-z planar averages X((7). A
comparison of the two curves shows that the spatial fluctua-
tions of the domain-wall position are much smaller than its
ensemble fluctuations. From the solid line, we sce that the
X, values have a typical standard deviation of between one
and two lattice constants. Other runs indicate that this result
is not very sensitive to system size. So, we can conclude that
the domain walls are relatively smooth. We can further sepa-
rate the contributions to these fluctuations coming from the
y and z directions. It is found that the fluctuations along the
z direction (i.e., along the polar direction) are about 40%
smaller than along the y direction. The sign of this result was
to be expected, since the shape of the domain wall should be
such as to minimize the surface charge AP-n that devclops
on it. Here, AP is the change of the polarization vector
across the domain wall and n is the unit vector normal to the
wall.

Finally, we turn to an estimate of the domain-wall forma-
tion energy. Because of the periodic boundary conditions im-
posed on our system, there are no surfaces to give rise to a
depolarization energy. Thus, the domain-wall encrgy £, can
be calculated from the difference between the energy of the
4L XLXL supercell with and without domain walls. This
difference is small, but because the correlation time of the
system (far from the transition) is quite short (20 MCS’s), a
sufficiently long simulation is capable of reducing the statis-
tical errors in E,, to an acceptable level. The calculated
domain-wall energies are shown in Table I. The reported
values have a statistical uncertainty of about 4%. Simulations
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v .1+ -~ domain-wall energies E,, and free energies
. foct. ot aanplation cell size L and temperature 7. Sta-
ot choatic o e about 4% for E, and 10% for F, .

E,, (erg/cm?) F,, (erg/cm?)

"y 15.8 4.6
i 17.1 4.0
= 15.6 5.0
17.0 4.4

A iwe gt sizes and temperatures are reported. We can
wo that sut resaits ave well converged with respect to system
vz Bevawse of the large increase of the correlation time

aear the transitions, it has proven difficult to give accurate
sidaes for &0 w other temperatures.

Our calculated vaiue of E,, =16 erg/lem? for the domain-
wail #nergy is, however, probably not the proper quantity to
compare with cxperimentally derived values. Instead, we
should compute a free energy, F,, which includes entropic
contributions from fluctuations of the ferroelectric order pa-
ramieter in the viemity of the domain wall. A glance at Fig. 1,
whizh shows considerable fluctuations, suggests that such
contribuuons are likely to be important.

We have estimated the domain-wall free energies F,, us-
mg an adiabatc swilching technique, as follows. First, we
start. with an equilibrated 4L XL XL supercell containing
two dorain walls, and for which the z components of the
a vectors in the central two layers in each domain are con-
struined to preset values, as before. We slowly reverse the
values of the constraint variables in the center of one of the
Jdomains over the course of a 20 000-MCS simulation, mak-
ing a small change in the constraint variables every 10
MCS’s. and compute the total work done on the constraint
variables. If the simulation succeeds in removing the two
domain walls adiabatically, we can equate the work done to
twice the domain-wall free energy F,,. By comparing runs
of from 20 000 to 30 000 MCS’s, we find differences in com-
puted F. values of only about 10%, which suggests that the
switching is indeed adiabatic. The resulting computed values
of F,. are about 4-5 erg/cmz, or about 3—4 times smaller
than the £, values (and slightly smaller than the 6.2
erg/em’ reported above for the energy of the ideal Ba-
centered wall).

Our result is consistent with previously published esti-
mates of the “energy” of the (100) 180° domain wall, al-
though such previous values are rather scattered and incon-
clusive. Previous experimental results of 10 and 3 erg/cm?
(close to the phase transition) were given by Merz'' and
Fousek and Safrankova,12 respectively. On the theoretical
side, Bulaevskii® reported a value of 10.5 erg/cm? using a
continuum Landau p6 model, while Lawless® calculated an
energy of 1.52 erg/cm? based on a microscopic phenomeno-
logical model. (Since the above estimates involve use of em-
pirical models fit to finite-temperature data, the “energy”
values are probably best interpreted as free energies.)

This investigation has opened several avenues for further
study. One important goal is to apply the model to more
realistic geometries that include surfaces; after all, in real
samples the domain structure generally arises because of the
depolarization energy associated with surfaces. A natural first
step would be to consider a slab geometry, to make contact
with experimental thin-film studies. This would require first-
principles calculations of very thin slabs (~3-5 unit cells
thick) to determine the necessary modifications to the effec-
tive Hamiltonian at the surface, followed by Monte Carlo
simulations on thicker slabs containing ferroelectric do-
mains. We are now beginning to undertake first-principles
calculations of the type needed. Other interesting avenues
would be to study other types of domain walls [e.g., (110)
180° or 90° domain walls] in tetragonal BaTiO4 and to con-
sider other phases of BaTiO5 or other perovskite materials.

In summary, we have studied the properties of 180° do-
main walls in BaTiO; using a first-principles based ap-
proach, by applying Monte Carlo simulations to a micro-
scopic effective Hamiltonian that was fitted to ab initio total-
energy calculations. The simulations were carried out in the
middle of the temperature region of the tetragonal phase,
relatively far from the C-T and T-O transitions. We confirm
that the domain walls are atomically thin and that the order
parameter does not rotate within the wall. We quantify the
width, smoothness, and energetics of these domain walls.
Our theoretical values of the wall width and free energy are
in reasonable agreement with previously reported values,
where available.

This work was supported by the Office of Naval Research
under contract number N00014-91-J-1184.

'M. E. Lines and A. M. Glass, Principles and Applications of
Ferroelectrics and Related Materials (Clarendon, Oxford,
1977).

“R. Resta, M. Posternak, and A. Baldereschi, Phys. Rev. Lett. 70,
1010 (1993).

*W. Zhong, R. D. King-Smith, and D. Vanderbilt, Phys. Rev. Lett.
72, 3618 (1994).

*V. A. Zhirnov, Sov. Phys. JETP 35, 822 (1959).

L. N. Bulaevskii, Sov. Phys. Solid State 5, 2329 (1964).

®W. N. Lawless, Phys. Rev. 175, 619 (1968).

"W. Zhong, D. Vanderbilt, and K. M. Rabe, Phys. Rev. Lett. 73,
1861 (1994); Phys. Rev. B 52, 6301 (1995).

8R. E. Cohen and H. Krakauer, Phys. Rev. B 42, 6416 (1990);
Ferroelectrics 136, 65 (1992); R. E. Cohen, Nature 358, 136
(1992).

D. J. Singh, Ferroelectrics 164, 143 (1995).

10N1. Tanaka and G. Honjo, J. Phys. Soc. Jpn. 19, 954 (1964).

U'W. J. Merz, Phys. Rev. 95, 690 (1954).

123 Fousek and M. Safrankova, Jpn. J. Appl. Phys. 4, 403 (1965).

13D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

143, Fousek and V. Janovec, J. Appl. Phys. 40, 135 (1969).

15The Monte Carlo Method in Condensed Matter Physics, edited by
K. Binder (Springer-Verlag, Berlin, 1992).



HED VRN

53 FIRST-PRINCIPLES INVESTIGATION OF 180° DOMAIN ... AR

16T Mitsui ez al., in Ferroelectrics and Related Substances. Oxides, x, while u, is strongly correlated along ) [fc »oarn- oo
edited by O. Madelung, Landoit-Bornstein, New Series, Group y-z planes involved in the definition of « huas i i 1
3, Vol. 16, Pt. a (Springer-Verlag, Berlin, 1981). fluctuations of i, while suppressing those :

7 The strong dipolar interactions give rise to a strong longitudinal 'S, I. Yakunin, V. V. Shakmanov, G. V. Spivi-_ cnt N % vidie o

correlation of the w;. That is, u, is strongly correlated along Sov. Phys. Solid State 14, 310 (1972).



PHYSICAL REVIEW B

VOLUME 56, NUMBER 3

15 JULY 1997-1

Ab initio study of BaTiO ; surfaces

J. Padilla and David Vanderbilt
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855-0849
(Received 18 February 1997)

We have carried out first-principles total-energy calculations of (001) surfaces of the tetragonal and cubic
phases of BaTiO;. Both BaO-terminated (type I) and TiO,-terminated (type II) surfaces are considered, and
the atomic configurations have been fully relaxed. We found no deep-gap surface states for any of the surfaces,
in agreement with previous theoretical studies. However, the gap is reduced for the type-II surface, especially
in the cubic phase. The surface relaxation energies are found to be substantial, i.e., many times larger than the
bulk ferroelectric well depth. Nevertheless, the influence of the surface upon the ferroelectric order parameter
is modest; we find only a small enhancement of the ferroelectricity near the surface. [S0163-1829(97)04927-8]

I. INTRODUCTION

Recently there has been a surge of interest in the applica-
tion of first-principles density-functional calculations to the
study of the rich phenomenology of the perovskite 0x1des
with special attention to ferroelectric (FE) properties. ! From
these investigations, it has been found that the FE instability
in these materials occurs as a result of a delicate balance
between long-range Coulomb interactions that favor the FE
state, and short-range forces that favor the cubic perovskite
phase.z'3 Moreover, the ferroelectric properties are well
known to degrade in thin-film* and particulate® geometries,
suggesting that the FE state could be very sensitive to sur-
face effects.

The cubic perovskites have the chemical formula ABO ;.
For II-IV perovskites (e.g., BaTiO3) A is a divalent cation
and B is a tetravalent transition metal, while for I-V perovs-
kites (e.g., KNbO ;) they are mono- and pentavalent, respec-
tively. The (001) and (111) surfaces of these materials have
been the most investigated experimentally.® There are two
possible terminations of the (001) surface: the AO-
terminated surface (type-I) and the BO ,-terminated surface
(type-II). In TI-IV perovskites, the AO and BO, layers are
charge neutral, so that both type-1 and type-II surfaces are
nonpolar. For I-V perovskites, the corresponding surfaces are
instead polar. As for (111) surfaces, the atomic planes in this
direction are of the form AO; and B, and are charged in
either case, so that the (111) surfaces are polar. Since polar
surfaces are expected to be relatively unstable, we have cho-
sen to focus here on the (001) surfaces of a II-IV perovskite,
BaTiO3.

Due in part to the catalytic properties of SrTiO; and
BaTiO3,’ there has been a continuous interest in the surface
properties of these materials. There have been previous the-
oretical studies especially for the case of the paraelectric
StTiO; surface, but also for BaTiOj;. Wolfram and
co-workers,8 using a linear combination of atomic orbitals
cluster method, predicted mid-gap surface states for
STiO 5, in disagreement with experimental
investigations.”!* Only after ad hoc modifications to thls
model could the experimental results be accounted for.!!
Tsukada er al.'? employed the DV Xa cluster method to
study SrTiO; surfaces, finding no mid-gap surface states.
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However, cluster methods are not very suitable for high-
accuracy calculations of relaxations and electronic states on
infinite surfaces, underlining the need for the application of
more accurate, self-consistent techniques. While such tech-
niques have recently yielded a great deal of insight into bulk
perovskites,z"”"15 their application to the study of perovskite
surfaces has not been very extensive. In fact, we only know
of two such studies. Cohen'®!'” presented linearized aug-
mented plane wave calculations performed for slabs of te-
tragonal BaTiO, with (001) and (111) surfaces, using both
symmetrical and asymmetrical terminations. Although some
relaxations were allowed, the atomic positions were not fully
relaxed. Kimura et al'® used a plane-wave
ultrasoft—pseudopotential19 approach (as in the present work)
to study the TiO,-terminated (001) surface of SrTiO3, with
and without oxygen vacancies at the surface. Again, the slabs
were not fully relaxed.

In contrast, we study here symmetrically terminated
type-1 and type-II surfaces of tetragonal and cubic BaTiO;
(001) for which the coordinates have been fully relaxed by
minimizing the total energy. This allows us to study the in-
fluence of surface relaxation effects upon the FE distortion.
For the tetragonal phase, we consider only the case of the
tetragonal ¢ axis (i.e., polarization) parallel to the surface.
(Polarization normal to the surface is suppressed by depolar-
ization fields,® at least for clean surfaces.) We employed the
ultrasoft-pseudopotential method!® within the local-density
approximation (LDA). This technique permits us to calculate
the Hellmann-Feynman forces on each atom, making it pos-
sible to find the relaxed structure much more efficiently than
for methods that compute only total energies.

Experimental studies of perovskites surfaces are compli-
cated by the presence of surface defects,?® making it difficult
to verify the surface stoichiometry. Therefore, most experi-
mental investigations have not been very conclusive. On
SrTiO4 surfaces, the situation is better: the surface relax-
ations have been studied,?'*? and (as mentioned above) the
absence of midgap surface state has been demonstrated.” For
BaTiO; surfaces, the experimental reports seem less conclu-
sive. For example, evidence both forg and agamst * surface
gap states in this material have been published.

Regarding the degradation of FE propertles for thin films
and small particles as mentioned above,™ there does not

1625 © 1997 The American Physical Society
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seem to be any consensus about the origin of these effects.
One possibility is that it is completely intrinsic, i.e., that the
very presence of the surface suppresses the FE order in the
vicinity of the surface. However, there are many other pos-
sible causes. These include the effects of surface-induced
strain; perturbations of the chemical composition near the
surface related to the presence of impurities, oxygen vacan-
cies, or other defects; and the depolarization fields for the
case of particles (or for films with polarization perpendicular
to the surface). Here, we take a modest step in the direction
of sorting out these effects by characterizing the purely in-
trinsic coupling between the presence of a surface and the FE
order, for the case of a free (vacuum-terminated) surface. As
we shall see, we find the surface relaxation energies are large
compared to FE distortion energies. However, we find very
little effect for type-I surfaces, and only a modest enhance-
ment of the FE order at type-II surfaces, with indications that
it will be mainly confined to just the first few atomic layers
near the surface. Thus, it appears unlikely that intrinsic sur-
face effects are responsible for the degradation of FE order in
thin films and particles.

The remainder of the paper is divided as follows. In Sec.
II, we describe the technical aspects of our first-principles
calculations. In Sec. III, we report the results of our simula-
tions. Finally, the main conclusions of the paper are re-
viewed in Sec. IV.

II. THEORETICAL DETAILS

We carried out self-consistent total-energy pseudopoten-
tial calculations in which the electronic wave functions were
expanded in a plane-wave basis. The core electrons were
frozen, and for a given geometry of the ions, the valence
electron wave functions were obtained by minimizing the
Kohn-Sham total-energy functional using a conjugate-
gradient technique.?® The exchange-correlation potential was
treated with the LDA approximation in the Ceperley-Alder
form.”® The forces on each ion were relaxed to less than
0.02 eV/A using a modified Broyden scheme.?’

The Vanderbilt ultrasoft-pseudopotential scheme'® was
employed. In this approach, the the norm-conservation con-
straint is relaxed, allowing one to treat rather localized orbit-
als with a modest plane-wave cutoff. The pseudopotentials
for Ti, Ba, and O are identical to those used previously25 ina
study of bulk perovskites. The semicore Ti 35 and 3p states
and Ba 5s and 5p states are included as valence levels. A
plane-wave cutoff of 25 Ry has been used throughout; pre-
vious work has shown that the results are well converged at
this cutoff.

BaTiO; undergoes a series of phase transitions as the
temperature is reduced, from the high-symmetry paraelectric
cubic phase to FE phases with tetragonal, orthorhombic, and
rhombohedral unit cells. The tetragonal structure is of special
interest, since it is the room-temperature structure. In this
paper, we are thus primarily interested in the surfaces of the
room-temperature tetragonal phase, although for comparison
we also present results for surface of the elevated-
temperature cubic phase. Ideally one would like to do this by
carrying out ab initio molecular-dynamics simulations at the
temperatures at which these phases are stable, but unfortu-
nately this is not practical. Instead, we carry out ground-state

TABLE 1. Computed and experimental values of structural pa-
rameters for BaTiO; in bulk cubic and tetragonal phases. a and ¢
are lattice constants; J, are displacements associated with the FE
instability as a fraction of c. Oy is the oxygen lying along x from
the Ti atom, and 8,(0y)= 8,(Oyy) by symmetry.

Phase Parameter Expt. Theory ®
cubic a (A) 3.996 3.948
tetrag. a (A) 3.992 3.938
c (A) 4.036 3.993

8,(Ti) 0.0135 0.0128

5,.(0) -0.0150 -0.0150

3,(Omw) -0.0240 -0.0232

Reference 30.
PReference 25.

(T=0) calculations, but subject to the imposition of the ap-
propriate (tetragonal or cubic) symmetry in order to prevent
the system from adopting the true rhombohedral T7=0 struc-
ture. This is clearly an approximation, but we think it is a
reasonable one. The computed ground-state structural param-
eters for the cubic and tetragonal bulk phases are given in
Table I, together with experimental values for comparison.
(Again, the theoretical values are for 7=0 structures with
the appropriate symmetry imposed.) The computed lattice
constants a and ¢ for the cubic and tetragonal phases are
1—2 % smaller than the experimental ones; this underesti-
mation is typical of LDA calculations. We use the theoretical
unit cell parameters in all calculations presented here.

As shown schematically in Fig. 1, the periodic slab cor-
responding to the type-I (BaO terminated) surface contains
17 atoms (four BaO layers and three TiO, layers). Similarly,
the type-II (TiO, terminated) slab contains 18 atoms (four
TiO, layers and three BaO layers). For both cases, the slabs
were thus three lattice constants thick; the vacuum region
was two lattice constants thick. The z axis is taken as normal
to the surface, and the M, mirror symmetry with respect to

1 BaO 1 TiO,
2 To, 2 BaO
3 BaO 3 TiO,
4 TO, 4 BaO
5 BaO 5 TiO,
6 TO, 6 BaO
7 BaO 7 TiO,
Slab | Slab Il

FIG. 1. Schematic arrangement of layers in the BaO-terminated
(slab I) and TiO,-terminated (slab II) supercell geometries. Layers
1 and 7 are surface layers.
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the central layer was imposed in all cases. For surfaces of the
cubic phase, mirror symmetries M, and M, were also pre-
served. For the tetragonal case, the polarization vector and
thus the tetragonal ¢ axis were chosen to lie along x (parallel
to the surface); here, M, symmetry was respected but M,
symmetry was allowed to be broken. As mentioned earlier,
the choice of polarization parallel to the surface is motivated
by the fact that no charge accumulation results at the surface
for this case, and thus no depolarization fields appea:.3 The
case of the tetragonal c-axis lying perpendicular to the sur-
face was considered by Cohen.!®!’

The calculations were done using a (4,4,2) Monkhorst-
Pack mesh.?® This corresponds to three and four k points in
the irreducible Brillouin zone (BZ) for the cubic and tetrag-
onal supercells, respectively. To test the convergence with
respect to k point sampling, we repeated the calculation for a
(6,6,2) mesh, finding that the surface energy differed by less
than 3%. When the vacuum region was enlarged to three
layers in thickness, the surface energy changed by less than
4%.

In order to study the relative stability of the two kinds of
surface terminations, it is necessary to introduced appropri-
ate chemical potentials.” To simplify our analysis, we think
of the independent constituents of the slab as being BaO and
TiO, units. We define E to be the formation energy needed
to make bulk BaTiO ; from BaO and TiO,, per formula unit.
Thus we have

—E¢=Eputio,” Epao~ Eio, (1

(by convention, E>0). Egyrio,» Epao, and Erio, are the
energies of the bulk crystals, per formula unit, measured
relative to isolated ion cores and electrons. BaTiO ; was cal-
culated in the relaxed tetragonal structure, and TiO, in the
relaxed rutile structure.

Now, we define the two chemical potentials KTio, and

Mpa0 in such a way that MTio, = 0 corresponds to a system in

contact with a reservoir of bulk crystalline TiO,, and simi-
larly for ug,o. Furthermore, if we insist that the system is
always in equilibrium with a reservoir of bulk BaTiO3, then
we have that

Mpaot trio,= ~ Ef. 2)

Thus, only one of up,o and prio, is an independent degree
of freedom. We arbitrarily chose urio, as the independent
one. Then HTip, can be allowed to vary over the range

— Ef< pui0,<0. 3)

At p1io,= — E; the system is in equilibrium with BaO and
BaTiO3, and for lower values bulk crystallites of BaO can
precipitate. Similarly, above ,uTi02=0, bulk crystallites of
TiO, can form.

Therefore, the grand thermodynamic potential per surface
unit cell is given by

F= 3 [Eg—Nrio,(H1i0, % ETi0,) = Nao( 80 Ea0) ]
4)
(the factor of 1/2 appearing because the cell contains two

surfaces), where E,, is the energy of the relaxed slab in the
tetragonal phase. For example, for the type-I slab, one has

TABLE II. Atomic relaxations of the Ba-terminated surface
(slab I) in the cubic (C) and tetragonal (T) phases, given as a
fraction of a or ¢, with respect to ideal positions (i.e., for &, , with
respect to the M, symmetry plane).

Atom 8, (C) 8.(T) 8, (T)
Ba(1) -0.0279 -0.0142 -0.0277
O -0.0140 -0.0298 -0.0126
Ti(2) 0.0092 -0.0086 0.0098
042) 0.0048 -0.0297 0.0059
05(2) 0.0048 -0.0240 0.0045
Ba(3) -0.0053 -0.0149 -0.0059
O3 -0.0026 -0.0280 -0.0020
Ti(4) 0 -0.0034 0

0,4) 0 -0.0340 0

Oy4) 0 -0.0256 0

Ntio,=3 and Ng,o=4. Equations (2) and (4) give F as a
function of Mip, OVer the range of Eq. (3).

III. RESULTS AND DISCUSSIONS
A. Structural relaxations

First we determined the equilibrium atomic positions for
our two types of slabs in the two phases. For the cubic sur-
face, we started from the ideal structure and relaxed. For the
tetragonal surface, we obtained a starting guess by superpos-
ing the z displacements from the relaxed cubic surface with
x displacements from the bulk tetragonal structure.”> The
relaxed geometries are summarized in Tables II and IIL. In
these tables, the atoms are listed in the same order as shown
in Fig. 1. (Coordinates are only listed for atoms in the top
half of the slab, z=0; the others are determined by the M,
mirror symmetry.) By symmetry, there are no forces along

x or y for the cubic surfaces, and no forces along y for the
tetragonal surface. Also due to the crystal termination, the
two O atoms associated with the Ti atom (Oy and Oyy) are no
longer equivalent in the tetragonal phase (I, II, and III indi-
cate the O that is connected to Ti by a bond along x, y, and
z, respectively).

From Tables II and III, we can see that the largest relax-
ations are on the surface-layer atoms, as expected. They are

TABLE IIl. Atomic relaxations of the Ti-terminated surface
(slab TI) in the cubic (C) and tetragonal (T) phases, given as a
fraction of a or ¢, with respect to ideal positions.

Atom 8, (C) 6, (T) 8, (T)
Ti(1) -0.0389 0.0005 -0.0331
O(1) -0.0163 -0.0499 -0.0100
Ou(l) -0.0163 -0.0366 -0.0071
Ba(2) 0.0131 -0.0148 0.0186
02 -0.0062 -0.0292 -0.0023
Ti(3) -0.0075 0.0019 -0.0058
0;(3) -0.0035 -0.0372 -0.0022
04(3) -0.0035 -0.0278 -0.0023
Ba(4) 0 -0.0111 0

Oul4) 0 -0.0276 0
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TABLE IV. Calculated interlayer relaxation () and rumpling
(7) for the surface layer of the relaxed slabs in the cubic (C) and
tetragonal (T) phases (A) .

TABLE V. Calculated FE distortion g of the relaxed slabs, for
each layer (units of lattice constant). The last line gives theoretical
bulk values for reference.

Slab B (C) 7 (C) B (T) 7 (T)
Siab I -0.08 0.03 -0.08 0.03
Slab II -0.11 0.05 -0.08 0.05

especially important for the Ti atoms in the Ti-terminated
slabs, in the direction perpendicular to the surface. This can
plausibly be explained by noting that for bulk BaTiO 3, the
filled Ba levels lie well below the oxygen-2p valence bands
and do not hybridize strongly, so that the Ba atom is a rela-
tive spectator in the bonding.?* In the tetragonal case, we can
also see that the asymmetry between the two O atoms lying
in a common surface plane is significant. Bond lengths on
the surface change by less than 1.5% with respect to the bulk
in the same phase (the latter values are the experimental
ones, taken from Mitsui e al.?).

We computed the average displacements 8 and the rum-
pling 7 for the surface layers; the results are given in Table
IV. To fix the notation, let 5z(M) be the change in the
surface-layer metal-atom z position relative to the ideal un-
relaxed structure, and 6z(O) be the same for the surface
oxygens (defined as [ 8z(Op) + 8z(Oy)]/2 for a TiO, layer).
Then the surface relaxation parameter B is defined as
[6z(M)+ 62(0)]/2, and the rumpling 7 is defined as
[62(0)— 6z(M)]/2. We find that the surface layers contract
substantially inwards towards the bulk, with both the metal
and oxygen ions relaxing in the same direction.

Cohen'” has computed the surface relaxations of surface
relaxations of BaTiO; slabs, both in the cubic phase and with
FE polarization normal to the surface.” Thus, direct compari-
son with our work is only possible for the cubic phase. In
this case, Cohen calculated the relaxation only for the case of
an asymmetrically terminated slab (BaO on one surface and
TiO, on the other). Thus, detailed quantitative agreement is
probably not expected, because (i) only the surface-layer at-
oms were relaxed in Cohen’s calculation, and (ii) the asym-
metric termination introduces a small electric field which
may have influenced the relaxations. Nevertheless, we do
find qualitative agreement. Cohen finds that the Ba and O
atoms relax inwards by 0.043 and 0.033 lattice constants,
respectively, on the type-I surface; and the Ti and O atoms
relax inwards by 0.048 and 0.027, respectively, on the
type-II surface. These can be compared with the first two
entries in the &,(C) column of Tables II and IIL It can be
seen that Cohen’s values are 20-100 % larger in magnitude,
but of the same sign, as those that we calculate. Similarly,
Cohen computes values of —0.15 A for the average surface
layer relaxation, to be compared with the values given by us
in the column B(C) of Table IV. The rumpling computed by
Cohen is also of the same sign, but different in detail, as that
calculated by us.

We are not aware of any experimental surface structure
determination for BaTiO; with which we can compare our
theory. However, we note that one low-energy electron dif-
fraction I-V study of the corresponding StTiO; surfaces?!
comes to an opposite conclusion, suggesting an outward re-
laxation of the surface layer on the order of 0.1 A, while a

Slab I Slab 11
Layer  &mp(BaO)  Sps(TiO,)  Sp(BaO)  8mx(TiO,)
1 0.0156 0.0438
2 0.0182 0.0144
3 0.0131 0.0344
4 0.0332 0.0165
Bulk 0.0232 0.0278 0.0232 0.0278

second such study?? is in less obvious contradiction with our
results. Clearly, there is a need for a parallel calculation on
the SrTiO; surface in order to determine whether the experi-
mental interpre:tation21'22 should be reexamined.

B. Influence of the surface upon ferroelectricity

It is important to understand whether the presence of the
surface has a strong effect upon the near-surface ferroelec-
tricity. For example, is the FE order enhanced near the sur-
face, or is it suppressed? As we shall see in Sec. III C, the
energy scale of the surface relaxations is larger than the en-
ergy scale of the FE double-well potential. Thus, a strong
effect is possible. To analyze whether it really occurs, we
computed an average FE distortion &g for each layer of the
slab. We define Spg= 6,(Ba) — 8,(Oyy) for a BaO plane, and
Spe= 0,(Ti) — [ 6,(Op + 8,(Oy 172 for a TiO, plane.

Our calculated values for dgg are given in Table V; the
last row of the table gives the bulk values for reference. No
clear pattern appears to emerge from these results, although
we do note a moderate enhancement of the FE instability in
the TiO, layers for the TiO,-terminated surface.

The lack of a clear trend for the influence of surface ef-
fects upon the FE distortion can be understood, at least in
part, by noting that the FE mode is only one of three zone-
center modes having the same symmetry.24 The FE mode is
distinguished as the one that is soft (w*<0) in the cubic
structure, but there is no particular reason why the surface
relaxation should couple more strongly to this mode than to
the others. We have estimated how strongly the surface re-
laxations are related to each of the zone-center modes by the
following procedure. We calculate the forces for a tetragonal
surface slab in which the displacements in the x direction are
those of the ideal bulk tetragonal structure, while the dis-
placements in the z direction are taken from the relaxed cu-
bic surface. The forces in the x direction are then projected
onto each of the zone-center bulk modes polarized along x.
That is, the force for each type of atom (e.g., Oy was
summed over all such atoms in the slab, and the inner prod-
uct was then taken between the resulting force vector and the
bulk mode eigenvectors.

We found that the FE mode accounts for only about 31%
and 26% of this force vector for the type-I and type-II slabs,
respectively. Thus, it seems that the distortions induced by
the presence of the surface are mostly of non-FE character,
helping to explain why the FE order is not as strongly af-
fected as might have been guessed.
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FIG. 2. Grand thermodynamic potential F as a function of the
chemical potential urip,, for the two types of surfaces, in the te-
tragonal phase. Dashed and solid lines correspond to type-I (BaO-
terminated) and type-II (TiO,-terminated) surfaces, respectively.

C. Surface energies

We turn now to a study of the surface energetics. Follow-
ing the approach outlined in Sec. II, we calculated the grand
thermodynamic potential F for our two types of surface as a
function of TiO, chemical potential. The results are shown
in Fig. 2. In order to attain optimal cancellation of errors,
Eqjo, and Ep,o were calculated within the LDA using the

same pseudopotentials, and with the same 25 Ry energy
cutoff. A similar k-point sampling as for the surfaces of
BaTiO; was also employed. In this way, we obtained
E¢=3.23 eV for the formation energy of BaTiO. This quan-
tity fixes the range of physical values of pri0,; the left and

right boundaries of Fig. 2 correspond to a system in thermo-
dynamic contact with bulk BaO and bulk TiO, respectively.
It can be seen that both surfaces have a comparable range of
thermodynamic stability, indicating that either type-I or
type-II surfaces could be formed depending on whether
growth occurs in Ba-rich or Ti-rich conditions.

The average surface energy E,; (i.e., the average of F
for the two kind of surfaces) is independent of KTi0, - There-

fore, this quantity is suitable for comparisons. For the cubic
phase, we estimated E g, for the (001) surfaces to be 1.241
eV per surface unit cell (1265 erg/cm?); and for the tetrag-
onal phase, it was estimated to be 1.237 eV per surface unit
cell (1260 erg/cm?). The value of the average E ., calcu-
lated in Ref. 17 for the symmetrically terminated cubic (001)
surfaces is 920 erg/cm?. As pointed out in that paper, the
large value of E,; may help explain why BaTiO; does not
cleave easily, but fractures instead.

In order to compute the surface relaxation energy E ..,
we computed the average surface energy E . for the unre-
laxed cubic slabs (i.e., atoms in the ideal cubic perovskite
positions), using the same k-point sampling as for the re-
laxed systems. We obtained E ;= 1.358 eV. Thus, the re-
laxations account for 0.127 eV of the surface energy per
surface unit cell (or about 130 erg/cm?).

Note that E,, is many times larger than the bulk ferro-
electric well depth, estimated to be of the order of 0.03 eV.
This would indicate that the surface is capable of acting as a
strong perturbation on the FE order. As explained in Sec.

36 AB INITIO STUDY OF BaTiO; SURFACES 1629

5.0

Energy (eV)

FIG. 3. Calculated band structures for BaTiO; in the cubic
phase. (a) Surface-projected bulk band structure. (b) BaO-
terminated surface (slab I). (c) TiO,-terminated surface (slab II).
The zero of energy corresponds to the bulk valence-band maximum.
Only the lowest few conduction bands are shown.

III B, however, the actual effect is more modest than one
would guess based on energetic considerations alone.

D. Surface band structure

As previously done by Cohen,!” we have carried out LDA
calculations of the surface electronic structure for our various
surface slabs. While the LDA is well known to be quantita-
tively unreliable as regards excitation properties such as
band gaps, we believe that the results presented here are
nevertheless likely to be qualitatively correct. The bulk band
gap in our calculation is 1.8 eV, to be compared with the
experimental value of 3.2 eV; this level of disagreement is
typical for the LDA.

Figure 3 shows the calculated LDA band structure for
cubic bulk BaTiO; projected onto the surface BZ, and the
surface band structures for the Ba- and Ti-terminated relaxed
surfaces in the cubic phase. (The zero of energy for each
surface slab was established by aligning the Ba or Ti semi-
core s states in the interior layers of the slab with those of the
bulk.) Plots for the tetragonal surfaces would look similar,
except that the tendency for states to intrude into the gap is
stronger for the cubic case. This can be seen in Table VI,
where we list the calculated band gaps for both cubic and

TABLE VI. Calculated band gaps for relaxed cubic (C) and
tetragonal (T) surface slabs (eV).

Slab C T

Slab I 1.80 2.01
Slab II 0.84 1.18
Bulk 1.79 1.80
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FIG. 4. Charge-density plots for relaxed Ti-terminated surface
(slab 1I) in the cubic phase. Panels (a-b) show cuts on a vertical
x-z BaO plane; panels (c-d) show cuts on the x-y surface TiO,
plane. Total charge density, (a) and (c); charge density of highest
occupied state at M point of the surface BZ, (b) and (d).

tetragonal slabs. We therefore tend to focus on the cubic
surfaces, where it is easier to identify and characterize the
surface states.

First, we can see that on the Ba-terminated (type-I) sur-
face, the gap is not reduced and there are no deep gap states.
On the Ti-terminated (type-1I) surface, however, the gap is
reduced, especially for the cubic case. As can be seen from
Fig. 3c, there is a tendency for valence-band states to intrude
upwards into the lower part of the band gap for this surface,
especially near the M point of the surface BZ. (Qualitatively
similar results can be seen in Fig. 3 of Ref. 17.) However, the
conduction band does not change much with respect to the
bulk. Moreover, we do not see signs of any true ‘‘deep-gap’’
states lying near the center of the gap. As noted earlier, the
existence of such deep-gap states remains controversial ex-
perimentally. Our work suggests that if gap states do exist in
connection with nondefective (001) surfaces, it is likely that
they would be found in the lower part of the band gap, and
that this would be indicative of exposed TiO, (as opposed to
BaO) surface planes.

Figure 4 illustrates the character of the valence-band state
at the M point that is intruding into the lower part of the gap.
The total charge density is_ also shown for reference. It can be
seen that this state is composed of O 2p lone-pair orbitals
lying in the surface plane. Further inspection shows that the

special feature of this state is that the wave function has four
nodal planes [(100), (110), (010), and (110)] intersecting at
the Ti sites. This precludes the presence of any Ti 3d char-
acter (in fact, any Ti character of angular momentum
[<4). In the bulk, the oxygen 2p orbitals are all hybridized
with Ti 3d orbitals to some extent, and the level repulsion
associated with this hybridization pushes the energy location
of the valence-band states downward in energy. Thus, the
energy of the unhybridized O 2p lone-pair surface state at
the M point is left intruding into the lower part of the gap.

This insight makes it possible to understand other features
of the surface band structures as well. For example, on the
BaO-terminated surface, every surface oxygen atom is di-
rectly above a Ti atom, and is strongly hybridized to it. Thus,
there is no such tendency for the formation of surface states
in this case. Returning to the TiO,-terminated surface, there
seems to be a weaker tendency for the intrusion of a valence-
band derived surface state at I'. This state turns out to have a
single nodal plane passing through the Ti site, so that hybrid-
jzation with Ti 3d orbitals is only weakly allowed (by the
breaking of M, mirror symmetry across the surface plane).

We expect that these results would remain qualita-
tively valid for other II-VI perovskites such as SrTiOj or
PbZrO ;. For 1-V perovskites such as KNbO3 and LiTaO3,
however, the (001) surface is nonstoichiometric, and the sur-
face electronic structure would be expected to be quite dif-
ferent.

IV. SUMMARY

In summary, we have carried out LDA density-functional
calculations of BaO- and TiO ,-terminated (001) surfaces for
cubic and tetragonal phases of BaTiO;. By minimizing the
forces on the ions, we obtained the relaxed ionic structures.
As would have been expected from the bulk electronic levels
of BaTiO;, the most important relaxations occur for the
TiO ,-terminated surfaces. There appears to be a modest ten-
dency for the surface relaxations to enhance the FE distortion
on that surface, although the situation is complicated by the
fact that the relaxations excite modes other than the soft
zone-center one.

The free energies for the different surfaces were calcu-
lated as a function of the TiO, chemical potential. In par-
ticular, the average surface energy was found to be about
1260 erg/cm 2. The surface relaxation energies were found to
be around 10% of the total surface energy.

In accord with previous theoretical reports, no mid-gap
surface levels are found. But for the TiO,-terminated sur-
faces, there is a substantial reduction of the bulk gap, espe-
cially for the cubic-phase surface. This reduction results
from the intrusion of states of valence-band character into
the lower part of the band gap, especially near the M point of
the surface BZ.
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